Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Facts & Numbers
000
Presentation

Robotics and Autonomous Systems

At CRAS, our mission is to develop innovative robotic solutions for complex environments and multiple operations, including data gathering, inspection, mapping, surveillance, and intervention.

We work in four main areas of research: autonomous navigation; long-term deployments; sensing, mapping, and intervention; multiple platform operations.

Latest News
Robotics

INESC TEC part of pilot experiment for underwater noise monitoring

South of São Miguel, in the archipelago of the Azores, three buoys spent 24 hours at sea collecting data - in this case, noise related to human activities that has an impact on the behaviour of cetaceans. For the first time, it was possible to collect information about underwater noise off São Miguel - more than 10 kilometres from the coast; INESC TEC joined this initiative.

02nd December 2024

Robotics

INESC TEC researchers organised underwater location challenge at the Breaking the Surface 2024 conference

INESC TEC researchers organised and carried out a technical challenge at the international conference Breaking the Surface 2024 (BTS), which took place from September 30 to October 7 in Biograd na Moru, Croatia. This interdisciplinary event (currently in the 16th edition) focuses on robotics and marine technology. This year's edition brought together 198 experts and researchers from different areas (representing more than 20 countries), who exchanged knowledge and experiences in the field of marine robotics and associated applications.

28th October 2024

Robotics

Once again, INESC TEC broke the Portuguese record with robots descending to a depth of 830m in the largest robotic exercise in the world

REPMUS - Robotic Experimentation and Prototyping with Maritime Unmanned Systems, the largest operational experimentation exercise of unmanned systems in the world, took place in Portugal yet again, between September 9 and 27 (Troia and Sesimbra).

17th October 2024

Robotics

Portugal at the forefront with new technology for measuring radon gas and improving global climate projections

For the next four years, INESC TEC will lead an international consortium with a budget of €2.6M, aimed at using advanced techniques to measure environmental radioactivity. According to estimates, by 2028, new technological solutions will be available that can improve both climate research - particularly in estimating greenhouse gas emissions - and radiological protection for the population and the environment.

02nd October 2024

The story of eight women who conquered the "unknown" – a session promoted by INESC TEC at the Glex Summit

Under the scientific coordination of Ana Pires, INESC TEC researcher, the SOE'24 event - Space, Ocean, and Earth Insights – returned to the stage of the Glex Summit, the world's largest summit in the field of space exploration. This year, the SOE focused on "Women in Exploration: Breaking Boundaries", challenging eight women to share their stories and how they have conquered the "unknown".

27th June 2024

073

Featured Projects

INESCTEC.OCEAN

Centre of Excellence in Ocean Research and Engineering

2025-2030

AEROSUB

Automated Inspection Robots for Surface, Aerial and Underwater Substructures

2024-2028

SEAGUARD

Sea Environmental Awareness and Guard enhanced with Unmanned AI Robotic Detection

2024-2027

NuClim

Nuclear observations to improve Climate research and GHG emission estimates

2024-2028

BioProtect

ADVANCING AREA-BASED MANAGEMENT TOOLS TO ACCELERATE THE PROTECTION AND RESTORATION OF MARINE BIODIVERSITY ACROSS THE EUROPEAN SEA BASINS

2024-2028

SENTINEL

SpacE operatioNs, moniToring, and mappINg ExpLorer: a smart Orb-system

2024-2025

NauticalSunrise

Survivability assessment, cost reduction pathways and environmental evaluation of offshore installed floating solar energy farms

2023-2027

TALOS

roboTics and Artificial intelligence Living labs improving Operations in PV Scenarios

2023-2026

NETTAGPlus

Preventing, avoiding and mitigating environmental impacts of fishing gears and associated marine litter

2023-2026

NMicroARTIC

Nitrogen Microbiome in the Changing Artic

2023-2026

ATE

Alliance for Energy Transition

2023-2025

TRIDENT

Technology based impact assessment tool foR sustaInable, transparent Deep sEa miNing exploraTion and exploitation

2023-2027

MineIO

A Holistic Digital Mine 4.0 Ecosystem

2023-2026

AIRSHIP

AUTONOMOUS FLYING SHIPS FOR INTER-ISLAND AND INLAND WATERS TRANSPORT

2023-2026

AOWINDE

ATLANTIC OFFSHORE WIND ENERGY

2023-2025

AEROGANP

Creación de un eje transfronterizo de investigación y transferencia de conocimiento en el sector aeronáutico y espacial en la Eurorregión Galicia-Norte de Portugal

2023-2026

SEAWINGS

Sea/Air Interphasic Wing-in-Ground Effect Autonomous Drones

2022-2026

OVERWATCH

Integrated holographic management map for safety and crisis events

2022-2025

NEXUS

Innovation Pact - Digital and Green Transition

2022-2025

NewSpacePortugal

Agenda New Space Portugal

2022-2025

Drivolution

Agenda Drivolution

2022-2025

StoneByPortugal

SUISTANABLE StoneByPortugal: Valorização da Pedra Natural para um futuro digital, sustentável e qualificado

2022-2025

FLYPASS

FoiL boat using clean energY for PASSenger transportation

2022-2024

TIMREX

T-Shaped Master Programme for Innovative Mineral Resource Exploration

2022-2024

FIRELOGUE

Cross-sector dialogue for Wildfire Risk Management

2021-2025

MAGPIE

sMArt Green Ports as Integrated Efficient multimodal hubs

2021-2026

EUSCORES

EUropean - Scalable and Complementary Offshore Renewable Energy Sources

2021-2025

Connect2Oceans

Connecting Atlantic and Arctic Oceans to Decipher Climate Change Impact on Plankton Microbiome Functions

2021-2024

MARIMAR

eMbarcação Autónoma para Remoção de lIxo MARinho

2020-2023

PORT XXI

Space Enabled Sustainable Port Services

2020-2022

SHIELD

Safeguard Heritage in Endangered Looted Districts

2020-2023

REV@CONSTRUCTION

Digital construction revolution

2020-2023

FLY_PT

Mobilizar a indústria aeronáutica nacional para a disrupção no transporte aéreo urbano do futuro

2020-2023

K2D

Knowledge and Data from the Deep to Space

2020-2023

NEWSAT

Development of a compact integrated sensor and satellite for earth observation

2020-2023

inSITE

inSITE. Insitu ore grading system using LIBS in harsh environments

2020-2022

ATLANTIS

The Atlantic Testing Platform for Maritime Robotics: New Frontiers for Inspection and Maintenance of Offshore Energy Infrastructures

2020-2023

UNEXUP

UNEXMIN Upscaling

2020-2022

QuALTOS

Quality Assurance in Long Term Observation Systems

2020-2022

Sail2020

Space-Atmosphere-Ocean Interactions in the marine boundary Layer

2020-2020

DEEPFIELD

DeepField- Deep Learning in Field Robotics: from conceptualization towards implementation

2019-2023

ESAPlastics

De-risk assessment: spectrometer for marine litter

2019-2021

SPRING

Strategic planning for water resources and implementation of novel biotechnical treatment solutions and good practices

2019-2024

Prince

Preparedness Response for CBRNE INCidEnts

2019-2022

Nettag

Tagging fishing gears and enhancing on board best-practices to promote waste free fisheries

2019-2021

Mine_Heritage

Historical Mining – tracing and learning from ancient materials and mining technology

2019-2021

NESSIE

moNitoring offshorE StructureS with robotIc systems intEgration

2019-2023

GROW

Long-range broadband underwater wireless communications

2018-2021

DIIUS

Distributed perceptIon for inspectIon of aqUatic Structures

2018-2022

ENDURANCE

Underwater wireless energy and communications enabling long-term deep-sea presence

2018-2020

HiperSea

Sistema Hiperbárico para Recolha e Manutenção de Organismos do Mar Profundo

2018-2022

BIOREM

Bioremediation of hydrocarbon pollutants by autochthonous microorganisms in aquatic environment

2018-2021

INTENDU

Integrated Technologies Longterm Deployment of Robotic Underwater platforms

2018-2021

FEEDFIRST

Desenvolvimento de uma nova tecnologia para cultivo de larvas de peixes à primeira alimentação

2018-2021

PROTOATLANTIC

Development and validation of a program for the prototyping and exploitation of innovative ideas

2017-2023

TEC4Sea

Modular Platform for Research, Test and Validation of Technologies supporting a Sustainable Blue Economy

2017-2022

EMSO-PT

Observatório Europeu Multidisciplinar do Fundo do Mar e Coluna de Água - Portugal

2017-2023

SpilLess

First line response to oil spills based on native microorganisms cooperation (SpilLess)

2017-2019

SIDENAV

Smart infrastructure for deep sea navigation

2016-2018

RAWFIE

Road-, Air- and Water-based Future Internet Experimentation

2016-2019

MyTag-CRAS

Integrating natural and artificial tags to reconstruct fish migrations and ontogenetic niche shifts

2016-2019

DeepFloat

Sistema de variação de flutuação para aplicações submarinas

2016-2018

UNEXMIN-CRAS

Autonomous Underwater Explorer for Flooded Mines

2016-2019

CORAL-SENSORS

CORAL – Sustainable Ocean Exploitation: Tools and Sensors

2016-2018

STRONGMAR-CRAS

STRengthening MARritime Technology Research Center

2016-2018

CORAL-TOOLS

CORAL – Sustainable Ocean Exploitation: Tools and Sensors

2016-2018

EMSODEV

EMSO implementation and operation: DEVelopment of instrument module

2015-2018

MarineEye

MarinEye - A prototype for multitrophic oceanic monitoring

2015-2017

BLUECOM+

Connecting Humans and Systems at Remote Ocean Areas using Cost-effective Broadband Communications

2015-2017

ENDURE

Enabling Long-Term Deployments of Underwater Robotic Platforms in Remote Oceanic Locations

2015-2017

VAMOS

Viable Alternative Mine Operating System

2015-2019

SUNNY

Smart UNmanned aerial vehicle sensor Network for detection of border crossing and illegal entrY

2014-2018

ICARUS-CRAS

Integrated Components for Assisted Rescue and Unmanned Search operations

2012-2016

Team
001

Laboratories

Robotics and Autonomous Systems Laboratory

Publications

CRAS Publications

View all Publications

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Authors
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publication
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

2024

Depth Control of an Underwater Sensor Platform: Comparison between Variable Buoyancy and Propeller Actuated Devices

Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publication
SENSORS

Abstract
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications.

2024

Comparison of Pallet Detection and Location Using COTS Sensors and AI Based Applications

Authors
Caldana, D; Carvalho, R; Rebelo, PM; Silva, MF; Costa, P; Sobreira, H; Cruz, N;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Autonomous Mobile Robots (AMR) are seeing an increased introduction in distinct areas of daily life. Recently, their use has expanded to intralogistics, where forklift type AMR are applied in many situations handling pallets and loading/unloading them into trucks. One of the these vehicles requirements, is that they are able to correctly identify the location and status of pallets, so that the forklifts AMR can insert the forks in the right place. Recently, some commercial sensors have appeared in the market for this purpose. Given these considerations, this paper presents a comparison of the performance of two different approaches for pallet detection: using a commercial off-the-shelf (COTS) sensor and a custom developed application based on Artificial Intelligence algorithms applied to an RGB-D camera, where both the RGB and depth data are used to estimate the position of the pallet pockets.

2024

Variable Structure Controller for Energy Savings in an Underwater Sensor Platform

Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publication
SENSORS

Abstract
This paper introduces a new variable structure controller designed for depth control of an autonomous underwater sensor platform equipped with a variable buoyancy module. To that end, the prototype linear model is presented, and a finite element-based method is used to estimate one of its parameters, the hull deformation due to pressure. To manage potential internal disturbances like hull deformation or external disturbances like weight changes, a disturbance observer is developed. An analysis of the observer steady-state estimation error in relation to input disturbances and system parameter uncertainties is developed. The locations of the observer poles according to its parameters are also identified. The variable structure controller is developed, keeping energy savings in mind. The proposed controller engages when system dynamics are unfavorable, causing the vehicle to deviate from the desired reference, and disengages when dynamics are favorable, guiding the vehicle toward the target reference. A detailed analysis determines the necessary switching control actions to ensure the system reaches the desired reference. Finally, simulations are run to compare the proposed controller's performance with that of PID-based controllers recently developed in the literature, assessing dynamic response and energy consumption under various operating conditions. Both the VBM- and propeller-actuated vehicles were evaluated. The results demonstrate that the proposed controller achieves an average energy consumption reduction of 22% compared to the next most efficient PID-based controller for the VBM-actuated vehicle, though with some impact on control performance.

2024

A Demonstrator for Future Fiber-Optic Active SMART Repeaters

Authors
Cruz, NA; Silva, A; Zabel, F; Ferreira, B; Jesus, SM; Martins, MS; Pereira, E; Matos, T; Viegas, R; Rocha, J; Faria, J;

Publication
OCEANS 2024 - SINGAPORE

Abstract
The deep-sea environment still presents many challenges for systematic, comprehensive data acquisition. The current generation of SMART cables incorporates low-power sensors in long-range telecommunication cables to improve knowledge of ocean variables, aid in earthquake and tsunami warnings, and enhance coastal protection. The K2D Project seeks to expand SMART cables' capabilities by increasing the diversity of sensors along deep water cables, integrating active devices, and leveraging mobile platforms like deep-water AUVs, thereby improving spatial coverage and advancing ocean monitoring technology. This paper discusses a demonstration of these capabilities, focusing on the description of the main building blocks developed along the project, with results from a sea deployment in September 2023.

Facts & Figures

8Papers in indexed journals

2020

1Book Chapters

2020

15Senior Researchers

2016

Contacts