Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Presentation

Robotics in Industry and Intelligent Systems

As part of the Cluster I+I - Industry and Innovation, at the Centre for Robotics in Industry and Intelligent Systems (CRIIS) we design and implement innovative solutions in the fields of industrial robotics and intelligent systems. At CRIIS, we work closely with Companies, other INESC TEC Centres and other Institutes and Universities, following the motto from Research and Development to Innovation, Design, Prototyping and Implementation. At the Centre, we address the following main research areas: Navigation and Localisation of Mobile Robots, Intelligent Sensors and Control of Dynamical Systems, 2D/3D Industrial Vision and Advanced Sensing, Mobile Manipulators, Special Structures and Architectures for Robots, Human Robot Interfacing and Augmented Reality, Future Industrial Robotics and Collaborative Robots, Vertical Integration, IoT, and Industry 4.0.

news
Team
Publications

CRIIS Publications

View all Publications

2027

COGNITIVE WORKLOAD AND FATIGUE IN A HUMAN-ROBOT COLLABORATIVE ASSEMBLY WORKSTATION: A PILOT STUDY

Authors
Joana Santos; Mariana Ferraz; Ana Pinto; Luis F. Rocha; Carlos M. Costa; Ana C. Simões; Klass Bombeke; M.A.P. Vaz;

Publication
International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO2023

Abstract

2025

Human-in-the-loop Multi-objective Bayesian Optimization for Directed Energy Deposition with in-situ monitoring

Authors
Sousa, J; Sousa, A; Brueckner, F; Reis, LP; Reis, A;

Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in areal setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.

2025

Artificial Intelligence for Control in Laser-Based Additive Manufacturing: A Systematic Review

Authors
Sousa, J; Brandau, B; Darabi, R; Sousa, A; Brueckner, F; Reis, A; Reis, LP;

Publication
IEEE ACCESS

Abstract
Laser-based additive manufacturing (LAM) offers the ability to produce near-net-shape metal parts with unparalleled energy efficiency and flexibility in both geometry and material selection. Despite advantages, these processes are inherently, as they are characterized by multiphysics interactions, multiscale phenomena, and highly dynamic behaviors, making their modeling and optimization particularly challenging. Artificial intelligence (AI) has emerged as a promising tool for enhancing the monitoring and control of additive manufacturing. This paper presents a systematic review of AI applications for real-time control of laser-based manufacturing processes, analyzing 16 relevant articles sourced from Scopus, IEEE Xplore, and Web of Science databases. The primary objective of this work is to contribute to the advancement of autonomous manufacturing systems capable of self-monitoring and self-correction, ensuring optimal part quality, enhanced efficiency, and reduced human intervention. Our findings indicate that 62.5 % of the 16 analyzed studies have deployed AI-driven controllers in real-world scenarios, with over 56 % using AI for control strategies, such as Reinforcement Learning. Furthermore, 62.5 % of the studies employed AI for process modeling or monitoring, which was integral to the development or data pipelines of the controllers. By defining a groundwork for future developments, this review not only highlights current advancements but also hints future innovations that will likely include AI-based controllers.

2025

Spray Quality Assessment on Water-Sensitive Paper Comparing AI and Classical Computer Vision Methods

Authors
Simoes, I; Sousa, AJ; Baltazar, A; Santos, F;

Publication
AGRICULTURE-BASEL

Abstract
Precision agriculture seeks to optimize crop yields while minimizing resource use. A key challenge is achieving uniform pesticide spraying to prevent crop damage and environmental contamination. Water-sensitive paper (WSP) is a common tool used for assessing spray quality, as it visually registers droplet impacts through color change. This work introduces a smartphone-based solution for capturing WSP images within vegetation, offering a tool for farmers to assess spray quality in real-world conditions. To achieve this, two approaches were explored: classical computer vision techniques and machine learning (ML) models (YOLOv8, Mask-RCNN, and Cellpose). Addressing the challenges of limited real-world data and the complexity of manual annotation, a programmatically generated synthetic dataset was employed to enable sim-to-real transfer learning. For the task of WSP segmentation within vegetation, YOLOv8 achieved an average Intersection over Union of 97.76%. In the droplet detection task, which involves identifying individual droplets on WSP, Cellpose achieved the highest precision of 96.18%, in the presence of overlapping droplets. While classical computer vision techniques provided a reliable baseline, they struggled with complex cases. Additionally, ML models, particularly Cellpose, demonstrated accurate droplet detection even without fine-tuning.

2025

Collaborative fault tolerance for cyber-physical systems: The detection stage

Authors
Piardi, L; de Oliveira, AS; Costa, P; Leitao, P;

Publication
COMPUTERS IN INDUSTRY

Abstract
In the era of Industry 4.0, fault tolerance is essential for maintaining the robustness and resilience of industrial systems facing unforeseen or undesirable disturbances. Current methodologies for fault tolerance stages namely, detection, diagnosis, and recovery, do not correspond with the accelerated technological evolution pace over the past two decades. Driven by the advent of digital technologies such as Internet of Things, cloud and edge computing, and artificial intelligence, associated with enhanced computational processing and communication capabilities, local or monolithic centralized fault tolerance methodologies are out of sync with contemporary and future systems. Consequently, these methodologies are limited in achieving the maximum benefits enabled by the integration of these technologies, such as accuracy and performance improvements. Accordingly, in this paper, a collaborative fault tolerance methodology for cyber-physical systems, named Collaborative Fault * (CF*), is proposed. The proposed methodology takes advantage of the inherent data analysis and communication capabilities of cyber-physical components. The proposed methodology is based on multi-agent system principles, where key components are self-fault tolerant, and adopts collaborative and distributed intelligence behavior when necessary to improve its fault tolerance capabilities. Experiments were conducted focusing on the fault detection stage for temperature and humidity sensors in warehouse racks. The experimental results confirmed the accuracy and performance improvements under CF* compared with the local methodology and competitiveness when compared with a centralized approach.