Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Facts & Numbers
000
Presentation

Artificial Intelligence and Decision Support

At LIAAD, we work on the very strategic area of Data Science, which has an increasing interest worldwide and is critical to all areas of human activity. The huge amounts of collected data (Big Data) and the ubiquity of devices with sensors and/or processing power offer opportunities and challenges to scientists and engineers. Moreover, the demand for complex models for objective decision support is spreading in business, health, science, e-government and e-learning, which encourages us to invest in different approaches to modelling.

Our overall strategy is to take advantage of the data flood and diversification, and to invest in research lines that will help reduce the gap between collected and useful data, while offering diverse modelling solutions.

At LIAAD, our fundamental scientific principals are machine learning, statistics, optimisation and mathematics.

Latest News
Computer Science and Engineering

INESC TEC developed natural language processing resources for the Portuguese language

The main goal of the PTicola project was to expand and build new Natural Language Processing (NLP) capabilities for the Portuguese language. The results of this project - which include, for example, an English/European Portuguese translator and a PT-BR/PT-PT language variety identifier - address the gap in NLP resources available for PT-PT compared to PT-BR.

14th February 2025

Artificial Intelligence

The largest machine learning conference in Europe will take place in Porto and is now accepting papers

It is called ECML PKDD - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases -, and it is the largest European conference in machine learning. The event, promoted by INESC TEC, will take place between September 15 and 19, 2025, in Porto; the submission of papers is open until March.

09th January 2025

Artificial Intelligence

"Where do We Come From? Where are We Going?": that's how João Gama - one of the most-cited scientists in the world - said “goodbye” to his teaching activity

35 years separate the beginning and the end of the teaching career of João Gama, one of the most-cited scientists in the world. The INESC TEC researcher, who presented his Last Lecture on November 25, said “goodbye” to the classrooms of the Faculty of Economics of the University of Porto (FEP). The motto? "Where do We Come From? Where are we going?” – the culmination of a recognised academic career, particularly in the fields of Artificial Intelligence (AI) and Machine Learning.

28th November 2024

Artificial Intelligence

INESC TEC researcher won PAIS Outstanding Paper Award at the European Conference on Artificial Intelligence

Matías Molina, INESC TEC researcher in Artificial Intelligence, received the PAIS Outstanding Paper Award at the European Conference on Artificial Intelligence, one of the most relevant AI events in Europe and the world. The EMERITUS project was the basis for this work: INESC TEC is using AI to improve the investigation of environmental crimes.

14th November 2024

Robotics

Portugal at the forefront with new technology for measuring radon gas and improving global climate projections

For the next four years, INESC TEC will lead an international consortium with a budget of €2.6M, aimed at using advanced techniques to measure environmental radioactivity. According to estimates, by 2028, new technological solutions will be available that can improve both climate research - particularly in estimating greenhouse gas emissions - and radiological protection for the population and the environment.

02nd October 2024

092

Featured Projects

TSP2Net

Time Series Privacy-Preserving: New Approaches via Complex Networks

2025-2026

EnSafe

Enhancing Environmental Protection: Anomaly Detection in Waste Transportation using Network Science

2025-2025

CitiLink

CitiLink - Enhancing municipal transparency and citizen engagement through AI: from unstructured to structured data

2024-2025

NuClim

Nuclear observations to improve Climate research and GHG emission estimates

2024-2028

HALM

Humanitarian Accounting Logistics with Machine learning

2024-2024

AI4REALNET

AI for REAL-world NETwork operation

2023-2027

AIBOOST

Artificial intelligence for better opportunities and scientific progress towards trustworthy and human-centric digital environment

2023-2027

AzDIH

Azores Digital Innovation Hub on Tourism and Sustainability

2023-2025

PAPVI2

Previsão Avançada de Preços de Venda de Imóveis

2023-2025

PFAI4_4eD

Programa de Formação Avançada Industria 4 - 4a edição

2023-2023

StorySense

Reaching the Semantic Layers of Stories in Text

2023-2026

ATTRACT_DIH

Digital Innovation Hub for Artificial Intelligence and High-Performance Computing

2022-2025

Produtech_R3

Agenda Mobilizadora da Fileira das Tecnologias de Produção para a Reindustrialização

2022-2025

EMERITUS

Environmental crimes’ intelligence and investigation protocol based on multiple data sources

2022-2025

FAIST

Fábrica Ágil Inteligente Sustentável e Tecnológica

2022-2025

ADANET

Internet das Coisas Assistida por Drones

2022-2025

PFAI4_3ed

Programa de Formação Avançada Industria 4 - 3a edição

2022-2022

FORM_I40

Formação Indústria 4.0

2022-2022

DAnon

Supervised Deanonymization of Dark Web Traffic for Cybercrime Investigation

2022-2023

THEIA

Automated Perception Driving

2022-2023

City Analyser

An agnostic platform to analyse massive mobility patterns

2021-2023

HfPT

Health from Portugal

2021-2025

AgWearCare

Wearables para Monitorização das Condições de Trabalho no Agroflorestal

2021-2023

SADCoPQ

Sistema de Apoio à Decisão no Controlo Preditivo da Qualidade na Indústria Metalomecânica da Precisão

2021-2023

SIGIPRO

Sistema inteligente de gestão de processos habilitados espacialmente

2021-2023

DigitalBudget_VE

Aplicação computacional para orçamentação automática de postos de carregamento de VE

2021-2021

XPM

eXplainable Predictive Maintenance

2021-2024

SSPM

Student Success Prediction Model

2021-2022

OnlineAIOps

Online Artificial Intelligence for IT Operations

2021-2023

AI_Sov

AI Sovereignty

2021-2021

PORT XXI

Space Enabled Sustainable Port Services

2020-2022

Training4DS

Formação Avançada em Data Science - Altice Labs

2020-2020

PFAI4.0

Programa de Formação Avançada Industria 4.0

2020-2021

HumanE-AI-Net

HumanE AI Network

2020-2024

MetaFLow

A Meta Learning work-flow for a Low Code Platform

2020-2021

PAIQAFSR

Provision of advisory inputs and quality assurance of the final study report.

2020-2020

Continental FoF

Fábrica do Futuro da Continental Advanced Antenna

2020-2023

PAFML

Investigação e desenvolvimento para aplicação de Machine Learning a dados de pacientes com Paramiloidose

2020-2023

AIDA

Adaptive, Intelligent and Distributed Assurance Platform

2020-2023

SLSNA

Prestação de Serviços no ambito do projeto SKORR

2020-2021

MINE4HEALTH

Text mining e clinical decision-making

2020-2021

Text2Story

Extracting journalistic narratives from text and representing them in a narrative modeling language

2019-2023

T4CDTKC

Training 4 Cotec, Digital Transformation Knowledge Challenge - Elaboração de Programa de Formação “CONHECER E COMPREENDER O DESAFIO DAS TECNOLOGIAS DE TRANSFORMAÇÃO DIGITAL”

2019-2021

PROMESSA

PROject ManagEment intellingent aSSistAnt

2019-2023

NDTECH

NDtech 4.0 - Smart and Connected - Estudo e Caderno de Encargos

2019-2019

RISKSENS

Market Risk Sensitivities

2019-2020

RAMnet

Risk Assessment for Microfinance

2019-2021

HOUSEVALUE

Estimativa de Valor de Avaliação de Imóveis

2019-2019

MLABA

Machine Learn Based Adaptive Business Assurance

2019-2019

Humane_AI

Toward AI Systems That Augment and Empower Humans by Understanding Us, our Society and the World Around Us

2019-2020

Moveo

Prestação de serviços de investigação e desenvolvimento relativos ao sistema MOVEO

2019-2019

FIN-TECH

A FINancial supervision and TECHnology compliance training programme

2019-2021

FailStopper

Early failure detection of public transport vehicles in operational context

2018-2021

TerraAlva

Terr@Alva

2018-2019

MDG

Modelling, dynamics and games

2018-2022

NITROLIMIT

Life at the edge: define the boundaries of the nitrogen cycle in the extreme Antarctic environments

2018-2022

RUTE

Randtech Update and Test Environment

2018-2020

MaLPIS

Aprendizagem Automática para Deteção de Ataques e Identificação de Perfis Segurança na Internet

2018-2022

SKORR

Advancing the Frontier of Social Media Management Tools

2018-2021

FAST-manufacturing

Flexible And sustainable manufacturing

2018-2022

FLOWTEE

Desenvolvimento de um programa que monitorize automaticamente os níveis de bem-estar (ou felicidade) dos funcionários, a partir de dados disponíveis online

2018-2019

MDIGIREC

Context Recommendation in Digital Marketing

2017-2018

NEXT-NET

Next generation Technologies for networked Europe

2017-2019

RECAP

Research on European Children and Adults born Preterm

2017-2021

SmartFarming

Ferramenta avançada para operacionalização da agricultura de precisão

2016-2018

PANACea

Perfis para Anomalias Consumo

2016-2019

BI4UP2

Business Intelligence (BI) Tool

2016-2017

Dynamics2

Dynamics, optimization and modelling

2016-2019

CORAL-TOOLS

CORAL – Sustainable Ocean Exploitation: Tools and Sensors

2016-2018

MarineEye

MarinEye - A prototype for multitrophic oceanic monitoring

2015-2017

FOUREYES

TEC4Growth - RL FourEyes - Intelligence, Interaction, Immersion and Innovation for media industries

2015-2019

NanoStima-RL5

NanoSTIMA - Advanced Methodologies for Computer-Aided Detection and Diagnosis

2015-2019

iMAN

iMAN - Intelligence for advanced Manufacturing systems

2015-2019

NanoStima-RL3

NanoSTIMA - Health data infrastructure

2015-2019

NanoStima-RL4

NanoSTIMA - Health Data Analysis & Decision

2015-2019

SMILES

SMILES - Smart, Mobile, Intelligent and Large scale Sensing and analytics

2015-2019

FOTOCATGRAF

Graphene-based semiconductor photocatalysis for a safe and sustainable water supply: an advanced technology for emerging pollutants removal

2015-2018

SEA

SEA-Sistema de ensino autoadaptativo

2015-2015

MAESTRA

Learning from Massive, Incompletely annotated, and Structured Data

2014-2017

BI4UP

Business Intelligence (BI) Tool

2014-2014

SIBILA

Towards Smart Interacting Blocks that Improve Learned Advice

2013-2015

SmartManufacturing

Smart Manufacturing and Logistics

2013-2015

SmartGrids

Smart Grids

2013-2015

Dynamics

Dynamics and Applications

2012-2015

e-Policy

Engineering for the Policy-making Life Cycle (ePolicy)

2011-2014

SIMULESP

Expert system to support network operator on real time decision

2011-2015

CRN

Trust-aware Automatic E-Contract Negotiation in Agent-based Adaptive Normative Environments

2010-2013

KDUS

Knowledge Discovery from Ubiquitous Data Streams

2010-2013

Palco3.0

Intelligent Web system to support the management of a social network on music

2008-2011

Argos

Wind power forecasting system

2008-2012

MOREWAQ

Monitoring and Forecasting of Water Quality Parameters

2008-2011

ORANKI

Resource-bounded outlier detection

2008-2011

Team
Publications

LIAAD Publications

View all Publications

2025

Decision-making systems improvement based on explainable artificial intelligence approaches for predictive maintenance

Authors
Rajaoarisoa, LH; Randrianandraina, R; Nalepa, GJ; Gama, J;

Publication
Eng. Appl. Artif. Intell.

Abstract
To maintain the performance of the latest generation of onshore and offshore wind turbine systems, a new methodology must be proposed to enhance the maintenance policy. In this context, this paper introduces an approach to designing a decision support tool that combines predictive capabilities with anomaly explanations for effective IoT predictive maintenance tasks. Essentially, the paper proposes an approach that integrates a predictive maintenance model with an explicative decision-making system. The key challenge is to detect anomalies and provide plausible explanations, enabling human operators to determine the necessary actions swiftly. To achieve this, the proposed approach identifies a minimal set of relevant features required to generate rules that explain the root causes of issues in the physical system. It estimates that certain features, such as the active power generator, blade pitch angle, and the average water temperature of the voltage circuit protection in the generator's sub-components, are particularly critical to monitor. Additionally, the approach simplifies the computation of an efficient predictive maintenance model. Compared to other deep learning models, the identified model provides up to 80% accuracy in anomaly detection and up to 96% for predicting the remaining useful life of the system under study. These performance metrics and indicators values are essential for enhancing the decision-making process. Moreover, the proposed decision support tool elucidates the onset of degradation and its dynamic evolution based on expert knowledge and data gathered through Internet of Things (IoT) technology and inspection reports. Thus, the developed approach should aid maintenance managers in making accurate decisions regarding inspection, replacement, and repair tasks. The methodology is demonstrated using a wind farm dataset provided by Energias De Portugal. © 2024

2025

Interventions based on biofeedback systems to improve workers’ psychological well-being, mental health and safety: a systematic literature review (Preprint)

Authors
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;

Publication

Abstract
BACKGROUND

In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being.

OBJECTIVE

To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions.

METHODS

A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation.

RESULTS

The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues.

CONCLUSIONS

Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.

2025

Spatio-Temporal Predictive Modeling Techniques for Different Domains: a Survey

Authors
Kumar, R; Bhanu, M; Mendes-moreira, J; Chandra, J;

Publication
ACM COMPUTING SURVEYS

Abstract
Spatio-temporal prediction tasks play a crucial role in facilitating informed decision-making through anticipatory insights. By accurately predicting future outcomes, the ability to strategize, preemptively address risks, and minimize their potential impact is enhanced. The precision in forecasting spatial and temporal patterns holds significant potential for optimizing resource allocation, land utilization, and infrastructure development. While existing review and survey papers predominantly focus on specific forecasting domains such as intelligent transportation, urban planning, pandemics, disease prediction, climate and weather forecasting, environmental data prediction, and agricultural yield projection, limited attention has been devoted to comprehensive surveys encompassing multiple objects concurrently. This article addresses this gap by comprehensively analyzing techniques employed in traffic, pandemics, disease forecasting, climate and weather prediction, agricultural yield estimation, and environmental data prediction. Furthermore, it elucidates challenges inherent in spatio-temporal forecasting and outlines potential avenues for future research exploration.

2025

Optimizing job shop scheduling with speed-adjustable machines and peak power constraints: A mathematical model and heuristic solutions

Authors
Homayouni, SM; Fontes, DBMM;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
This paper addresses a job shop scheduling problem with peak power constraints, in which jobs can be processed once or multiple times on either all or a subset of the machines. The latter characteristic provides additional flexibility, nowadays present in many manufacturing systems. The problem is complicated by the need to determine both the operation sequence and starting time as well as the speed at which machines process each operation. Due to the adherence to renewable energy production and its intermittent nature, manufacturing companies need to adopt power-flexible production schedules. The proposed power control strategies, that is, adjusting processing speed and timing to reduce peak power requirements may impact production time (makespan) and energy consumption. Therefore, we propose a bi-objective approach that minimizes both objectives. A linear programming model is developed to provide a formal statement of the problem, which is solved to optimality for small-sized instances. We also proposed a multi-objective biased random key genetic algorithm framework that evolves several populations in parallel. Computational experiments provide decision and policymakers with insights into the implications of imposing or negotiating power consumption limits. Finally, the several trade-off solutions obtained show that as the power limit is lowered, the makespan increases at an increasing rate and a similar trend is observed in energy consumption but only for very small makespan values. Furthermore, peak power demand reductions of about 25% have a limited impact on the minimum makespan value (4-6% increase), while at the same time allowing for a small reduction in energy consumption.

2025

The Application of Machine Learning and Deep Learning with a Multi-Criteria Decision Analysis for Pedestrian Modeling: A Systematic Literature Review (1999-2023)

Authors
Reyes-Norambuena, P; Pinto, AA; Martínez, J; Yazdi, AK; Tan, Y;

Publication
SUSTAINABILITY

Abstract
Among transportation researchers, pedestrian issues are highly significant, and various solutions have been proposed to address these challenges. These approaches include Multi-Criteria Decision Analysis (MCDA) and machine learning (ML) techniques, often categorized into two primary types. While previous studies have addressed diverse methods and transportation issues, this research integrates pedestrian modeling with MCDA and ML approaches. This paper examines how MCDA and ML can be combined to enhance decision-making in pedestrian dynamics. Drawing on a review of 1574 papers published from 1999 to 2023, this study identifies prevalent themes and methodologies in MCDA, ML, and pedestrian modeling. The MCDA methods are categorized into weighting and ranking techniques, with an emphasis on their application to complex transportation challenges involving both qualitative and quantitative criteria. The findings suggest that hybrid MCDA algorithms can effectively evaluate ML performance, addressing the limitations of traditional methods. By synthesizing the insights from the existing literature, this review outlines key methodologies and provides a roadmap for future research in integrating MCDA and ML in pedestrian dynamics. This research aims to deepen the understanding of how informed decision-making can enhance urban environments and improve pedestrian safety.

Facts & Figures

3Book Chapters

2020

29Senior Researchers

2016

72Researchers

2016