Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Facts & Numbers
000
Presentation

Artificial Intelligence and Decision Support

At LIAAD, we work on the very strategic area of Data Science, which has an increasing interest worldwide and is critical to all areas of human activity. The huge amounts of collected data (Big Data) and the ubiquity of devices with sensors and/or processing power offer opportunities and challenges to scientists and engineers. Moreover, the demand for complex models for objective decision support is spreading in business, health, science, e-government and e-learning, which encourages us to invest in different approaches to modelling.

Our overall strategy is to take advantage of the data flood and diversification, and to invest in research lines that will help reduce the gap between collected and useful data, while offering diverse modelling solutions.

At LIAAD, our fundamental scientific principals are machine learning, statistics, optimisation and mathematics.

Latest News
Artificial Intelligence

INESC TEC researcher won PAIS Outstanding Paper Award at the European Conference on Artificial Intelligence

Matías Molina, INESC TEC researcher in Artificial Intelligence, received the PAIS Outstanding Paper Award at the European Conference on Artificial Intelligence, one of the most relevant AI events in Europe and the world. The EMERITUS project was the basis for this work: INESC TEC is using AI to improve the investigation of environmental crimes.

14th November 2024

Robotics

Portugal at the forefront with new technology for measuring radon gas and improving global climate projections

For the next four years, INESC TEC will lead an international consortium with a budget of €2.6M, aimed at using advanced techniques to measure environmental radioactivity. According to estimates, by 2028, new technological solutions will be available that can improve both climate research - particularly in estimating greenhouse gas emissions - and radiological protection for the population and the environment.

02nd October 2024

Artificial Intelligence

INESC TEC tests Artificial Intelligence to improve investigation competences in environmental crimes

The Institute joined a European project that's developing a platform targeting police authorities and border guards, towards improving investigation competences when addressing environmental crimes. The Artificial Intelligence (AI) behind the platform is promoted by INESC TEC researchers.

26th February 2024

INESC TEC seeks to help companies embrace digital transformation at lower costs

Digital transition, innovation, business empowerment, financing, disruptive technologies; and a certainty: 2024 will be a year of opportunities for companies that are willing to take risks. Close to 100 participants gathered at Palácio do Freixo to get to know ATTRACT project, coordinated by INESC TEC. 

08th February 2024

Collaboration with Austrian university awarded at international conference

An unsupervised approach that summarises and orders the main changes verified in two versions of the same document – this is the research work that earned Ricardo Campos, a researcher at INESC TEC, Adam Jatowt and Lukas Éder, researchers at the University of Innsbruck (Austria), the Best Demo Paper Award at CIKM'23 - ACM International Conference on Information and Knowledge Management.

10th November 2023

Team
Publications

LIAAD Publications

View all Publications

2025

Optimizing job shop scheduling with speed-adjustable machines and peak power constraints: A mathematical model and heuristic solutions

Authors
Homayouni, SM; Fontes, DBMM;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
This paper addresses a job shop scheduling problem with peak power constraints, in which jobs can be processed once or multiple times on either all or a subset of the machines. The latter characteristic provides additional flexibility, nowadays present in many manufacturing systems. The problem is complicated by the need to determine both the operation sequence and starting time as well as the speed at which machines process each operation. Due to the adherence to renewable energy production and its intermittent nature, manufacturing companies need to adopt power-flexible production schedules. The proposed power control strategies, that is, adjusting processing speed and timing to reduce peak power requirements may impact production time (makespan) and energy consumption. Therefore, we propose a bi-objective approach that minimizes both objectives. A linear programming model is developed to provide a formal statement of the problem, which is solved to optimality for small-sized instances. We also proposed a multi-objective biased random key genetic algorithm framework that evolves several populations in parallel. Computational experiments provide decision and policymakers with insights into the implications of imposing or negotiating power consumption limits. Finally, the several trade-off solutions obtained show that as the power limit is lowered, the makespan increases at an increasing rate and a similar trend is observed in energy consumption but only for very small makespan values. Furthermore, peak power demand reductions of about 25% have a limited impact on the minimum makespan value (4-6% increase), while at the same time allowing for a small reduction in energy consumption.

2024

Estimating the Likelihood of Financial Behaviours Using Nearest Neighbors A case study on market sensitivities

Authors
Mendes Neves, T; Seca, D; Sousa, R; Ribeiro, C; Mendes Moreira, J;

Publication
COMPUTATIONAL ECONOMICS

Abstract
As many automated algorithms find their way into the IT systems of the banking sector, having a way to validate and interpret the results from these algorithms can lead to a substantial reduction in the risks associated with automation. Usually, validating these pricing mechanisms requires human resources to manually analyze and validate large quantities of data. There is a lack of effective methods that analyze the time series and understand if what is currently happening is plausible based on previous data, without information about the variables used to calculate the price of the asset. This paper describes an implementation of a process that allows us to validate many data points automatically. We explore the K-Nearest Neighbors algorithm to find coincident patterns in financial time series, allowing us to detect anomalies, outliers, and data points that do not follow normal behavior. This system allows quicker detection of defective calculations that would otherwise result in the incorrect pricing of financial assets. Furthermore, our method does not require knowledge about the variables used to calculate the time series being analyzed. Our proposal uses pattern matching and can validate more than 58% of instances, substantially improving human risk analysts' efficiency. The proposal is completely transparent, allowing analysts to understand how the algorithm made its decision, increasing the trustworthiness of the method.

2024

Optimal gas subset selection for dissolved gas analysis in power transformers

Authors
Pinto, J; Esteves, V; Tavares, S; Sousa, R;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE

Abstract
The power transformer is one of the key components of any electrical grid, and, as such, modern day industrialization activities require constant usage of the asset. This increases the possibility of failures and can potentially diminish the lifespan of a power transformer. Dissolved gas analysis (DGA) is a technique developed to quantify the existence of hydrocarbon gases in the content of the power transformer oil, which in turn can indicate the presence of faults. Since this process requires different chemical analysis for each type of gas, the overall cost of the operation increases with number of gases. Thus said, a machine learning methodology was defined to meet two simultaneous objectives, identify gas subsets, and predict the remaining gases, thus restoring them. Two subsets of equal or smaller size to those used by traditional methods (Duval's triangle, Roger's ratio, IEC table) were identified, while showing potentially superior performance. The models restored the discarded gases, and the restored set was compared with the original set in a variety of validation tasks.

2024

Pre-trained language models: What do they know?

Authors
Guimaraes, N; Campos, R; Jorge, A;

Publication
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Large language models (LLMs) have substantially pushed artificial intelligence (AI) research and applications in the last few years. They are currently able to achieve high effectiveness in different natural language processing (NLP) tasks, such as machine translation, named entity recognition, text classification, question answering, or text summarization. Recently, significant attention has been drawn to OpenAI's GPT models' capabilities and extremely accessible interface. LLMs are nowadays routinely used and studied for downstream tasks and specific applications with great success, pushing forward the state of the art in almost all of them. However, they also exhibit impressive inference capabilities when used off the shelf without further training. In this paper, we aim to study the behavior of pre-trained language models (PLMs) in some inference tasks they were not initially trained for. Therefore, we focus our attention on very recent research works related to the inference capabilities of PLMs in some selected tasks such as factual probing and common-sense reasoning. We highlight relevant achievements made by these models, as well as some of their current limitations that open opportunities for further research.This article is categorized under:Fundamental Concepts of Data and Knowledge > Key Design Issues in DataMiningTechnologies > Artificial Intelligence

2024

<i>Physio</i>: An LLM-Based Physiotherapy Advisor

Authors
Almeida, R; Sousa, H; Cunha, LF; Guimaraes, N; Campos, R; Jorge, A;

Publication
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT V

Abstract
The capabilities of the most recent language models have increased the interest in integrating them into real-world applications. However, the fact that these models generate plausible, yet incorrect text poses a constraint when considering their use in several domains. Healthcare is a prime example of a domain where text-generative trustworthiness is a hard requirement to safeguard patient well-being. In this paper, we present Physio, a chat-based application for physical rehabilitation. Physio is capable of making an initial diagnosis while citing reliable health sources to support the information provided. Furthermore, drawing upon external knowledge databases, Physio can recommend rehabilitation exercises and over-the-counter medication for symptom relief. By combining these features, Physio can leverage the power of generative models for language processing while also conditioning its response on dependable and verifiable sources. A live demo of Physio is available at https://physio.inesctec.pt.

Facts & Figures

19Papers in indexed journals

2020

23Academic Staff

2020

3Book Chapters

2020