Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Andry Maykol Pinto concluded the Doctoral Program in Electrical and Computer Engineering with thesis related to Robotics, from the Faculty of Engineering of the University of Porto, in 2014. At the same institution, he obtained a Master in Engineering Electrotechnical and Computers in 2010. Currently, he works as a Senior Researcher at the Center for Robotics and Autonomous Systems at INESC TEC and as an Assistant Professor at the Faculty of Engineering of the University of Porto.

Interest
Topics
Details

Details

  • Name

    Andry Maykol Pinto
  • Role

    Senior Researcher
  • Since

    01st February 2011
007
Publications

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Authors
Claro, RM; Neves, FSP; Pinto, AMG;

Publication
Journal of Field Robotics

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.

2024

Fusing heterogeneous tri-dimensional information for reconstructing submerged structures in harsh sub-sea environments

Authors
Leite, PN; Pinto, AM;

Publication
INFORMATION FUSION

Abstract
Exploiting stronger winds at offshore farms leads to a cyclical need for maintenance due to the harsh maritime conditions. While autonomous vehicles are the prone solution for O&M procedures, sub-sea phenomena induce severe data degradation that hinders the vessel's 3D perception. This article demonstrates a hybrid underwater imaging system that is capable of retrieving tri-dimensional information: dense and textured Photogrammetric Stereo (PS) point clouds and multiple accurate sets of points through Light Stripe Ranging (LSR), that are combined into a single dense and accurate representation. Two novel fusion algorithms are introduced in this manuscript. A Joint Masked Regression (JMR) methodology propagates sparse LSR information towards the PS point cloud, exploiting homogeneous regions around each beam projection. Regression curves then correlate depth readings from both inputs to correct the stereo-based information. On the other hand, the learning-based solution (RHEA) follows an early-fusion approach where features are conjointly learned from a coupled representation of both 3D inputs. A synthetic-to-real training scheme is employed to bypass domain-adaptation stages, enabling direct deployment in underwater contexts. Evaluation is conducted through extensive trials in simulation, controlled underwater environments, and within a real application at the ATLANTIS Coastal Testbed. Both methods estimate improved output point clouds, with RHEA achieving an average RMSE of 0.0097 m -a 52.45% improvement when compared to the PS input. Performance with real underwater information proves that RHEA is robust in dealing with degraded input information; JMR is more affected by missing information, excelling when the LSR data provides a complete representation of the scenario, and struggling otherwise.

2024

Reinforcement learning based robot navigation using illegal actions for autonomous docking of surface vehicles in unknown environments

Authors
Pereira, MI; Pinto, AM;

Publication
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Abstract
Autonomous Surface Vehicles (ASVs) are bound to play a fundamental role in the maintenance of offshore wind farms. Robust navigation for inspection vehicles should take into account the operation of docking within a harbouring structure, which is a critical and still unexplored maneuver. This work proposes an end-to-end docking approach for ASVs, based on Reinforcement Learning (RL), which teaches an agent to tackle collision- free navigation towards a target pose that allows the berthing of the vessel. The developed research presents a methodology that introduces the concept of illegal actions to facilitate the vessel's exploration during the learning process. This method improves the adopted Actor-Critic (AC) framework by accelerating the agent's optimization by approximately 38.02%. A set of comprehensive experiments demonstrate the accuracy and robustness of the presented method in scenarios with simulated environmental constraints (Beaufort Scale and Douglas Sea Scale), and a diversity of docking structures. Validation with two different real ASVs in both controlled and real environments demonstrates the ability of this method to enable safe docking maneuvers without prior knowledge of the scenario.

2024

Nautilus: An autonomous surface vehicle with a multilayer software architecture for offshore inspection

Authors
Campos, DF; Goncalves, EP; Campos, HJ; Pereira, MI; Pinto, AM;

Publication
JOURNAL OF FIELD ROBOTICS

Abstract
The increasing adoption of robotic solutions for inspection tasks in challenging environments is becoming increasingly prevalent, particularly in the offshore wind energy industry. This trend is driven by the critical need to safeguard the integrity and operational efficiency of offshore infrastructure. Consequently, the design of inspection vehicles must comply with rigorous requirements established by the offshore Operation and Maintenance (O&M) industry. This work presents the design of an autonomous surface vehicle (ASV), named Nautilus, specifically tailored to withstand the demanding conditions of offshore O&M scenarios. The design encompasses both hardware and software architectures, ensuring Nautilus's robustness and adaptability to the harsh maritime environment. It presents a compact hull capable of operating in moderate sea states (wave height up to 2.5 m), with a modular hardware and software architecture that is easily adapted to the mission requirements. It has a perception payload and communication system for edge and real-time computing, communicates with a Shore Control Center and allows beyond visual line-of-sight operations. The Nautilus software architecture aims to provide the necessary flexibility for different mission requirements to offer a unified software architecture for O&M operations. Nautilus's capabilities were validated through the professional testing process of the ATLANTIS Test Center, involving operations in both near-real and real-world environments. This validation process culminated in Nautilus's reaching a Technology Readiness Level 8 and became the first ASV to execute autonomous tasks at a floating offshore wind farm located in the Atlantic.

2024

Enhancing Underwater Inspection Capabilities: A Learning-Based Approach for Automated Pipeline Visibility Assessment

Authors
Mina, J; Leite, PN; Carvalho, J; Pinho, L; Gonçalves, EP; Pinto, AM;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Underwater scenarios pose additional challenges to perception systems, as the collected imagery from sensors often suffers from limitations that hinder its practical usability. One crucial domain that relies on accurate underwater visibility assessment is underwater pipeline inspection. Manual assessment is impractical and time-consuming, emphasizing the need for automated algorithms. In this study, we focus on developing learning-based approaches to evaluate visibility in underwater environments. We explore various neural network architectures and evaluate them on data collected within real subsea scenarios. Notably, the ResNet18 model outperforms others, achieving a testing accuracy of 93.5% in visibility evaluation. In terms of inference time, the fastest model is MobileNetV3 Small, estimating a prediction within 42.45 ms. These findings represent significant progress in enabling unmanned marine operations and contribute to the advancement of autonomous underwater surveillance systems.

Supervised
thesis

2023

Robust Perception System for Autonomous Precise Landing of UAVs in Offshore Wind Farms

Author
Rafael Marques Claro

Institution
INESCTEC

2023

A multimodal vision-based sensor fusion approach for precise landing of an UAV

Author
José Miguel Lopes Ferrão

Institution
INESCTEC

2023

Development of a web-based eye-tracking tool for usability evaluation studies

Author
Daniel Rodrigues da Silva

Institution
INESCTEC

2023

Perception-based Autonomous Underwater Vehicle Navigation for Close-range Inspection of Offshore Structures

Author
Renato Jorge Moreira Silva

Institution
INESCTEC

2023

An Intelligent Retention System for Unmanned Aerial Vehicles on a Dynamic Platform

Author
Lourenço Sousa de Pinho

Institution
INESCTEC