Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am a senior researcher with a degree in Electrical Engineering from University of Porto, Portugal (option of Digital and Computer Systems). Since 1996, I am responsible for Research and Technological Development projects in the Centre for Enterprise Systems Engineering (CESE) at INESC TE. Information Systems, Operations Management, Decision Support and Enterprise Collaborative Networks are my main areas of work. In this context, I have participated in national and European projects of applied research in close collaboration with other research institutions, technology centres, companies of the ICT sector and industrial companies from various sectors, among which stand out the textile, clothing and footwear sectors and the automotive industry. The following is a sample of European projects I was engaged with: AC/DC “Automotive Chassis Development for 5-Days-Cars”, eBiz-TCF “Harmonising e-Business processes and data exchanges for SMEs in the textile/clothing and footwear sectors in the Single Market”, STAMINA “Sustainable and reliable robotics for part handling in manufacturing automation”. Besides software-based prototypes, I published several articles in scientific journals, conference proceedings and book chapters.

Interest
Topics
Details

Details

  • Name

    César Toscano
  • Role

    Senior Researcher
  • Since

    15th April 1996
025
Publications

2024

Deep Reinforcement Learning-Based Approach to Dynamically Balance Multi-manned Assembly Lines

Authors
Santos, R; Marques, C; Toscano, C; Ferreira, M; Ribeiro, J;

Publication
Lecture Notes in Mechanical Engineering

Abstract
Assembly lines are at the core of many manufacturing systems, and planning for a well-balanced flow is key to ensure long-term efficiency. However, in flexible configurations such as Multi-Manned Assembly Lines (MMAL), the balancing problem also becomes more challenging. Due to the increased relevance of these assembly lines, this work aims to investigate the MMAL balancing problem, to contribute for a more effective decision-making process. Therefore, a new approach is proposed based on Deep Reinforcement Learning (DRL) embedded in a Digital Twin architecture. The proposed approach provides a close-to-reality training environment for the agent, using Discrete Event Simulation to simulate the production system dynamics. This methodology was tested on a real-world instance with preliminary results showing that similar solutions to the ones obtained using optimization-based strategies are achieved. This research provides evidence of success in terms of dynamic resource assignment to tasks and workers as a basis for future developments. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Scalable Digital Twins for industry 4.0 digital services: a dataspaces approach

Authors
Moreno, T; Almeida, A; Toscano, C; Ferreira, F; Azevedo, A;

Publication
PRODUCTION AND MANUFACTURING RESEARCH-AN OPEN ACCESS JOURNAL

Abstract
The manufacturing industry faces a new revolution, grounded on the intense digitalization of assets and industrial processes and the increasing computation capabilities imposed by the new data-driven digital architectures. This reality has been promoting the Digital Twin concept and its importance in the industrial companies' business models. However, with these new opportunities, also new threads may rise, mainly related to industrial data protection and sovereignty. Therefore, this research paper will demonstrate the International Data Spaces reference model's application to overcome these limitations. Following a pilot study with a Portuguese machine producer/maintainer enterprise, this paper will demonstrate the development of a cutting and bending machine Digital Twin, leveraged on an International Data Spaces infrastructure for interoperability, for the plastic and metal industry and its importance to introduce this machine manufacturing company in a new business-to-business marketplace from the EU project Market 4.0.

2023

Prototyping the IDS Security Components in the Context of Industry 4.0 - A Textile and Clothing Industry Case Study

Authors
Torres, N; Chaves, A; Toscano, C; Pinto, P;

Publication
Communications in Computer and Information Science

Abstract
With the introduction of Industry 4.0 technological concepts, suppliers and manufacturers envision new or improved products and services, cost reductions, and productivity gains. In this context, data exchanges between companies in the same or different activity sectors are necessary, while assuring data security and sovereignty. Thus, it is crucial to select and implement adequate standards which enable the interconnection requirements between companies and also feature security by design. The International Data Spaces (IDS) is a current standard that provides data sharing through data spaces mainly composed of homogeneous rules, certified data providers/consumers, and reliability between partners. Implementing IDS in sectors such as textile and clothing is expected to open new opportunities and challenges. This paper proposes a prototype for the IDS Security Components in the Textile and Clothing Industry context. This prototype assures data sovereignty and enables the interactions required by all participants in this supply chain industry using secure communications. The adoption of IDS as a base model in this activity sector fosters productive collaboration, lowers entry barriers for business partnerships, and enables an innovation environment. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2021

Digital twin for manufacturing equipment in industry 4.0

Authors
Moreno T.; Almeida A.; Ferreira F.; Caldas N.; Toscano C.; Azevedo A.;

Publication
Advances in Transdisciplinary Engineering

Abstract
The manufacturing industry faces a new revolution, grounded on the intense digitalization of assets and industrial processes and the increasing computation capabilities imposed by the new data-driven digital architectures. This reality has been promoting the Digital Twin (DT) concept and its importance on the industrial companies' business models. However, with these new opportunities, also new threads may rise, mainly related to industrial data protection and sovereignty. Therefore, this research paper will demonstrate the International Data Spaces (IDS) reference model's application to overcome these limitations. Following a pilot study with a Portuguese machine manufacturing company, this paper will demonstrate the development of a cutting and bending machines DT, leveraged on an IDS infrastructure for interoperability, for the plastic and metal industry and its importance to introduce this machine manufacturing company in a new B2B marketplace from the EU project Market 4.0.

2021

A new Simulation-Based Approach in the Design of Manufacturing Systems and Real-Time Decision

Authors
Santos, R; Toscano, C; de Sousa, JP;

Publication
IFAC PAPERSONLINE

Abstract
The principles and tools made available by the Industry 4.0, smart factories, or the Internet of Things (IoT), along with the adoption of more comprehensive simulation models, can significantly help the industry to face the current, huge external and internal challenges. This paper presents a new simulation-based approach to support decision making in the design and operational management of manufacturing systems. This approach is used to evaluate different layouts and resources allocation, and help managing operations, by integrating a simulation software with real-time data collected from the production assets through an IoT platform. The developed methodology uses a digital representation of the real production system (that may be viewed as a form of a digital twin) to assess different production scenarios. A set of key performance indicators (e.g. productivity) provided by the simulation can be used by the Manufacturing Execution System (MES) to generate production schedules. The developed approach was implemented and assessed in a real case study, showing its robustness and application potential. Its extension to other industrial contexts and sectors seems, therefore, quite promising. Copyright (C) 2021 The Authors.

Supervised
thesis

Automatic inconsistency detection in a logistic world model (european project STAMINA)

Author
Rafael Lirio Arrais

Institution
INESCTEC