Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am currently assistant researcher at INESC TEC and an invited assistant professor at the University of Minho. My current research rests on distributed machine learning, addressing several fronts. In detail, in the last few years, I have been delving into privacy-preserving distributed machine learning and federated learning, the application of distributed machine learning to healthcare challenges, and storage optimizations for machine learning and distributed machine learning. Now, I am expanding my research toward energy-aware storage systems for deep learning workloads and AI control algorithms for optimizing systems. I am growing my publication record on these subjects, having already some relevant papers in reputable journals, conferences, and workshops (e.g., IEEE Access, ACM SAC, EPIA). Finally, I have been an active researcher on multiple international and national projects, such as EU Project GreenDat.AI, Compete2020 BigHPC and AIDA, PT-UTAustin PAStor, as well as international consortiums (CENTRA).?

Interest
Topics
Details

Details

  • Name

    Cláudia Vanessa Brito
  • Role

    Assistant Researcher
  • Since

    01st October 2018
004
Publications

2025

Promoting sustainable and personalized travel behaviors while preserving data privacy

Authors
Brito, C; Pina, N; Esteves, T; Vitorino, R; Cunha, I; Paulo, J;

Publication
Transportation Engineering

Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives. © 2024

2024

A Distributed Computing Solution for Privacy-Preserving Genome-Wide Association Studies

Authors
Brito, C; Ferreira, P; Paulo, J;

Publication

Abstract
AbstractBreakthroughs in sequencing technologies led to an exponential growth of genomic data, providing unprecedented biological in-sights and new therapeutic applications. However, analyzing such large amounts of sensitive data raises key concerns regarding data privacy, specifically when the information is outsourced to third-party infrastructures for data storage and processing (e.g., cloud computing). Current solutions for data privacy protection resort to centralized designs or cryptographic primitives that impose considerable computational overheads, limiting their applicability to large-scale genomic analysis.We introduce Gyosa, a secure and privacy-preserving distributed genomic analysis solution. Unlike in previous work, Gyosafollows a distributed processing design that enables handling larger amounts of genomic data in a scalable and efficient fashion. Further, by leveraging trusted execution environments (TEEs), namely Intel SGX, Gyosaallows users to confidentially delegate their GWAS analysis to untrusted third-party infrastructures. To overcome the memory limitations of SGX, we implement a computation partitioning scheme within Gyosa. This scheme reduces the number of operations done inside the TEEs while safeguarding the users’ genomic data privacy. By integrating this security scheme inGlow, Gyosaprovides a secure and distributed environment that facilitates diverse GWAS studies. The experimental evaluation validates the applicability and scalability of Gyosa, reinforcing its ability to provide enhanced security guarantees. Further, the results show that, by distributing GWASes computations, one can achieve a practical and usable privacy-preserving solution.

2024

To FID or not to FID: Applying GANs for MRI Image Generation in HPC

Authors
Cepa, B; Brito, C; Sousa, A;

Publication

Abstract
AbstractWith the rapid growth of Deep Learning models and neural networks, the medical data available for training – which is already significantly less than other types of data – is becoming scarce. For that purpose, Generative Adversarial Networks (GANs) have received increased attention due to their ability to synthesize new realistic images. Our preliminary work shows promising results for brain MRI images; however, there is a need to distribute the workload, which can be supported by High-Performance Computing (HPC) environments. In this paper, we generate 256×256 MRI images of the brain in a distributed setting. We obtained an FIDRadImageNetof 10.67 for the DCGAN and 23.54 for the WGAN-GP, which are consistent with results reported in several works published in this scope. This allows us to conclude that distributing the GAN generation process is a viable option to overcome the computational constraints imposed by these models and, therefore, facilitate the generation of new data for training purposes.

2024

Mastering Artifact Correction in Neuroimaging Analysis: A Retrospective Approach

Authors
Oliveira, A; Cepa, B; Brito, C; Sousa, A;

Publication

Abstract
The correction of artifacts in Magnetic Resonance Imaging (MRI) is increasingly relevant as voluntary and involuntary artifacts can hinder data acquisition. Reverting from corrupted to artifact-free images is a complex task. Deep Learning (DL) models have been employed to preserve data characteristics and to identify and correct those artifacts. We propose MOANA, a novel DL-based solution to correct artifacts in multi-contrast brain MRI scans. MOANA offers two models: the simulation and the correction models. The simulation model introduces perturbations similar to those occurring in an exam while preserving the original image as ground truth; this is required as publicly available datasets rarely have motion-corrupted images. It allows the addition of three types of artifacts with different degrees of severity. The DL-based correction model adds a fourth contrast to state-of-the-art solutions while improving the overall performance of the models. MOANA achieved the highest results in the FLAIR contrast, with a Structural Similarity Index Measure (SSIM) of 0.9803 and a Normalized Mutual Information (NMI) of 0.8030. With this, the MOANA model can correct large volumes of images in less time and adapt to different levels of artifact severity, allowing for better diagnosis.

2024

MAC: An Artifact Correction Framework for Brain MRI based on Deep Neural Networks

Authors
Oliveira, A; Cepa, B; Brito, C; Sousa, A;

Publication

Abstract
AbstractThe correction of artifacts in Magnetic Resonance Imaging (MRI) is crucial due to physiological phenomena and technical issues affecting diagnostic quality. Reverting from corrupted to artifact-free images is a complex task. Deep Learning (DL) models have been employed to preserve data characteristics and to identify and correct those artifacts. We proposeMAC, a novel DL-based solution to correct artifacts in multi-contrast brain MRI scans.MACoffers two models: the simulation and the correction models. The simulation model introduces perturbations similar to those occurring in an exam while preserving the original image as ground truth; this is required as publicly available datasets rarely have motion-corrupted images. It allows the addition of three types of artifacts with different degrees of severity. The DL-based correction model adds a fourth contrast to state-of-the-art solutions while improving the overall performance of the models.MACachieved the highest results in the FLAIR contrast, with a Structural Similarity Index Measure (SSIM) of 0.9803 and a Normalized Mutual Information (NMI) of 0.8030. Moreover, the model reduced training time by 63% compared to its predecessor.MACmodel can correct large volumes of images faster and adapt to different levels of artifact severity than current state-ofthe-art models, allowing for better diagnosis.