Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Details

Details

  • Name

    Eduardo Silva
  • Role

    TEC4 Coordinator
  • Since

    01st December 2010
046
Publications

2024

A Survey of Seafloor Characterization and Mapping Techniques

Authors
Loureiro, G; Dias, A; Almeida, J; Martins, A; Hong, SP; Silva, E;

Publication
REMOTE SENSING

Abstract
The deep seabed is composed of heterogeneous ecosystems, containing diverse habitats for marine life. Consequently, understanding the geological and ecological characteristics of the seabed's features is a key step for many applications. The majority of approaches commonly use optical and acoustic sensors to address these tasks; however, each sensor has limitations associated with the underwater environment. This paper presents a survey of the main techniques and trends related to seabed characterization, highlighting approaches in three tasks: classification, detection, and segmentation. The bibliography is categorized into four approaches: statistics-based, classical machine learning, deep learning, and object-based image analysis. The differences between the techniques are presented, and the main challenges for deep sea research and potential directions of study are outlined.

2023

Precipitation-Driven Gamma Radiation Enhancement Over the Atlantic Ocean

Authors
Barbosa, S; Dias, N; Almeida, C; Silva, G; Ferreira, A; Camilo, A; Silva, E;

Publication
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES

Abstract
Gamma radiation over the Atlantic Ocean was measured continuously from January to May 2020 by a NaI(Tl) detector installed on board the Portuguese navy's ship NRP Sagres. Enhancements in the gamma radiation values are identified automatically by an algorithm for detection of anomalies in mean and variance as well as by visual inspection. The anomalies are typically +50% above the background level and relatively rare events (similar to<10% of the days). All the detected anomalies are associated with simultaneous precipitation events, consistent with the wet deposition of scavenged radionuclides. The enhancements are detected in the open ocean even at large distances (+500 km) from the nearest coastline. Back trajectories reveal that half of these events are associated with air masses experiencing continental land influences, but the other half do not display evidence of recent land contact. The enhancements in gamma radiation very far from land and with no evidence of continental fetch from back trajectories are difficult to explain as resulting only from radionuclides with a terrestrial source such as radon and its progeny. Further investigation and additional measurements are needed to improve understanding on the sources of ambient radioactivity in the open ocean and assess whether gamma radiation in the marine environment is influenced not only by radionuclides of terrestrial origin, but also cosmogenic radionuclides, like Beryllium-7, formed in the upper atmosphere but with the ability to be transported downward and serve as a tracer of the aerosols to which it attaches. Plain Language Summary Radioactive elements such as the noble gas radon and those produced by its radioactive decay are naturally present in the environment and used as tracers of atmospheric transport and composition. In particular, the noble gas radon, being inert and of predominantly terrestrial origin, is used to identify pristine marine air masses with no land contamination. Precipitation over land typically brings radon from the atmosphere to the surface, enhancing gamma radiation on the ground, but such enhancements have not been identified before nor expected over the ocean due to the low amount of radon typical of marine air masses. Here we report, for the first time, gamma radiation enhancements associated with precipitation in the oceanic environment, using measurements performed over the Atlantic Ocean in a campaign onboard the Portuguese navy ship NRP Sagres.

2023

GeoTec: A System for 3D Reconstruction in Underground Environment (Aveleiras Mine, Monastery of Tibães, NW Portugal)

Authors
Pires, A; Dias, A; Rodrigues, P; Silva, P; Santos, T; Oliveira, A; Ferreira, A; Almeida, J; Martins, A; Chaminé, I; Silva, E;

Publication
Advances in Science, Technology and Innovation

Abstract

2023

Autonomous UAV Landing Approach for Marine Operations

Authors
Moura, A; Antunes, J; Martins, JJ; Dias, A; Martins, A; Almeida, JM; Silva, E;

Publication
OCEANS 2023 - LIMERICK

Abstract
The use of autonomous vehicles in maritime operations is a technological challenge. In the particular case of autonomous aerial vehicles (UAVs), their application ranges from inspection and surveillance of offshore power plants, and marine life observation, to search and rescue missions. Manually landing UAVs onboard water vessels can be very challenging due to limited space onboard and wave agitation. This paper proposes an autonomous solution for the task of landing commercial multicopter UAVs with onboard cameras on water vessels, based on the detection of a custom landing platform with computer vision techniques. The autonomous landing behavior was tested in real conditions, using a research vessel at sea, where the UAV was able to detect, locate, and safely land on top of the developed landing platform.

2023

TEC4SEA-Developing maritime technology for a sustainable blue economy

Authors
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;

Publication
OCEANS 2023 - LIMERICK

Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.

Supervised
thesis

2022

Impact of management styles on tensions experienced by social enterprises

Author
Carlos Manuel Martins Vieira

Institution
UP-FEP

2021

Deep learning para classificação automática de sons usando o Audioset

Author
MIGUEL ÂNGELO MOREIRA ROCHA

Institution
IPP-ISEP

2021

Sistema de localização relativa de um sistema robótico subaquático

Author
JOSÉ PEDRO ALMEIDA MARQUES DE OLIVEIRA

Institution
IPP-ISEP

2020

Desenvolvimento e validação de um simulador 3D para prova de condução autónoma do FNR

Author
David Luis Pereira Fernandes

Institution
IPP-ISEP

2019

Análise e previsão de acidentes rodoviários usando data mining

Author
BRUNO MIGUEL FERREIRA TEIXEIRA

Institution
IPP-ISEP