Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Fernanda Resende
  • Role

    External Research Collaborator
  • Since

    01st September 2004
Publications

2022

Design and experimental tests of an Imbert type downdraft gasifier prototype and clean-up system for small-scale biomass-based power generation

Authors
Mendonça, M; Mantilla, V; Patela, J; Silva, V; Resende, F;

Publication
Renewable Energy and Environmental Sustainability

Abstract
This paper addresses the design, development and experimental tests of a prototype of fuel gas generation system based on biomass gasification for small-scale applications, around 5?kW. It comprises the small scale downdraft gasifier and the gas cleaning system aiming to clean-up the producer gas to be used in the upstream Internal Combustion Engine (ICE). The design of the downdraft gasifier prototype follows the methodologies that have been reported on the available literature. However, since these methodologies apply to gasifiers with larger rated powers, the adopted methodology is based on the extrapolation of the main parameters used for larger gasifiers design. For runing the ICE the producer gas requires to have a specific gas composition with an acceptable range of impurities. Therefore, a clean-up system was proposed following three stages: in first instance a hot gas clean-up using a cyclone designed to eliminate particles and compounds; then a heat exchanger was used for cooling the gas to condensate tars and water; finally a cold gas clean-up is performed by filtration using two filter steps: the first one using organic material (biomass) and the second one using a polypropylene cartridge filter. Experimental tests were performed using the developed imbert downdraft gasifier prototype, using pellets as feedstock. The preliminary results allow verifying several drawbacks that will difficult an effective integration of the developed prototype for small scale power generation applications based on ICE using low density feedstock.

2019

Long-Term Impact Evaluation of Advanced Under Frequency Load Shedding Schemes on Distribution Systems With DG Islanded Operation

Authors
Issicaba, D; da Rosa, MA; Resende, FO; Santos, B; Pecas Lopes, JAP;

Publication
IEEE TRANSACTIONS ON SMART GRID

Abstract
This paper presents a long-term impact evaluation algorithm to assess advanced under frequency load shedding (UFLS) schemes on distribution systems with intentional islanding of distributed generation (DG). The algorithm is based on a combined discrete-continuous simulation model which is utilized to verify the effect of the schemes on reliability indices such as the system average interruption frequency index, system average interruption duration index, and energy not supplied. Moreover, a polynomial neural network-based approach to advanced load shedding is implemented to support DG islanding in order to illustrate the applicability of the evaluation. Simulation results highlight the long-term effect of employing UFLS to support intentional islanding of DG using an actual network from the South of Brazil.

2019

Using biomass gasification for small scale power generation systems: Specifications of the conceptual framework

Authors
Resende F.O.; Silva V.F.; Mendonca M.L.; Barbosa A.C.; Brito P.; Azevedo J.C.; Almeida A.; Gomes H.T.;

Publication
8th International Conference on Renewable Energy Research and Applications, ICRERA 2019

Abstract
The development of small-scale power generation units based on biomass gasification is an effective mean to meet the growth interest of deployment of local power generation exploiting endogenous renewable energy sources. However, significant research and development activities are required towards the deployment of cost-effective solutions suitable to be used in several applications and with different biomass feedstock. For this purpose, a flexible experimental setup is required to be developed. This paper proposes a critical review of the current state of the art of the available technologies suitable for small-scale power generation using biomass gasification. The main guidelines to develop cost-effective solutions are identified and the conceptual framework of the experimental setup is proposed. Also, the operational specifications are presented.

2017

Using low-voltage surge protection devices for lightning protection of 15/0.4 kV pole-mounted distribution transformer

Authors
Resende, FO; Peças Lopes, JA;

Publication
CIRED - Open Access Proceedings Journal

Abstract

2014

Simultaneous Tuning of Power System Stabilizers Installed in the VSC-based MTDC Networks of Large Offshore Wind Farms

Authors
Resende, FO; Vasconcelos, MH; Pecas Lopes, JAP;

Publication
2014 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC)

Abstract
Using Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) technologies, in a Multi-terminal dc (MTDC) system, has been envisaged as an attractive solution for connecting the large offshore wind farms that have been planned to meet the EU renewable energy targets. The control and operation of VSC-HVDC technologies comprise a number of challenging tasks, aiming to assure an effective integration of MTDC systems in ac transmission systems. Stability studies play a key role within this framework. Among them, small signal stability analysis is required. Therefore, in this paper, modal analysis is performed for assessing small signal stability, in terms of the electromechanical modes of oscillation, considering the combined AC-MTDC system. Also, this paper evaluates the interest of installing classical Power Systems Stabilizer (PSS) in the onshore VSC stations for providing additional damping to the electromechanical modes of oscillation. Simultaneous tuning is performed for adjusting the parameters of these PSS based controllers. For this purpose, an optimization based approach exploiting Evolutionary Particle Swarm Optimization (EPSO) is proposed. Modal analysis and time domain simulations are performed to evaluate the effectiveness of the proposed solutions.