Details
Name
Fernando José RibeiroRole
Research AssistantSince
01st June 2018
Nationality
PortugalCentre
Power and Energy SystemsContacts
+351222094000
fernando.j.ribeiro@inesctec.pt
2024
Authors
Ribeiro, FJ; Lopes, JAP; Soares, FJ; Madureira, AG;
Publication
APPLIED SCIENCES-BASEL
Abstract
Currently, the transmission system operators (TSOs) from Portugal and Spain do not procure a frequency containment reserve (FCR) through market mechanisms. In this context, a virtual power plant (VPP) that aggregates sources, such as wind and solar power and hydrogen electrolyzers (HEs), would benefit from future participation in this ancillary service market. The methodology proposed in this paper allows for quantifying the revenues of a VPP that aggregates wind and solar power and HEs, considering the opportunity costs of these units when reserving power for FCR participation. The results were produced using real data from past FCR market sessions. Using market data from 2022, a VPP that aggregates half of the HEs and is expected to be connected in the country by 2025 will have revenues over EUR 800k, of which EUR 90k will be HEs revenues.
2024
Authors
Ribeiro, FJ; Lopes, JAP; Soares, FJ; Madureira, AG;
Publication
UTILITIES POLICY
Abstract
Frequency Containment Reserve (FCR) Cooperation is a European effort to integrate several countries in an integrated international electricity market platform for FCR procurement. In this market, Balancing Service Providers (BSPs) are on the supply side and Transmission System Operators (TSOs) on the demand side. This paper proposes a novel settlement scheme for sharing costs among TSOs; it proposes no changes to existing market clearing rules or to the existing settlement of the BSPs' revenues. It is shown that the current TSO settlement scheme is an inequitable mechanism that originates negative costs for some TSOs in specific conditions, which are extensively discussed. The proposed TSO settlement scheme overcomes these inequities. In the proposed scheme, TSOs begin paying the local BSPs for the cleared bids needed locally, and the remaining imports are calculated in a subsequent step. Doing so avoids using the so-called import/export costs, which are demonstrated to be the source of the inequities in the current scheme. It is shown that if the proposed pricing scheme had been adopted from July 2019 to December 2022, all TSOs would have been affected. Specifically, the most negatively impacted TSO would have its accumulated costs increased by 16% and the most positively impacted TSO would have its accumulated cost decreased by 32%. The inequities of the current mechanism amount to more than 50 Me or 7.4% of the total accumulated costs. Although the proposed mechanism is tested here under the FCR Cooperation, it can be applied to other markets where the rules allow different local settlement prices.
2023
Authors
Ribeiro, FJ; Lopes, JAP; Fernandes, FS; Soares, FJ; Madureira, AG;
Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) for frequency related Ancillary Services (AS), namely Frequency Containment Reserve (FCR), Synthetic Inertia (SI) , Fast Frequency Response (FFR) in future operation scenarios in the Iberian Peninsula (IP) considering low system iner-tia. The proposed framework for analysis consists of a dynamic model developed in MATLAB/Simulink. Simulations show that an instantaneous inverter based resource (IBR) trip induced by a grid fault may lead to the occurrence of values of Rate of Change of Frequency (RoCoF) close to undesirable thresholds if the FCR is provided solely by the conventional generators. The obtained results illustrate that HEs can outperform conventional generators on the provision of FCR. Furthermore, the FCR is unable to unlock the full potential of fast responding HEs. This suggests the advantage of providing additional AS such as SI or FFR in critical periods. Simulations also show that the benefit of additional AS can be limited in specific conditions, especially depending on the evolution of HEs' ramping capabilities, but are still a relevant complement to other solutions designed to deal with low inertia in power systems such as synchronous compensators.& COPY; 2023 Elsevier Ltd. All rights reserved.
2023
Authors
Ribeiro, J; Pecas Lopes, A; Soares, J; Madureira, G;
Publication
2023 International Conference on Smart Energy Systems and Technologies, SEST 2023
Abstract
The Transmission System Operators (TSOs) from Portugal and Spain do not procure Frequency Containment Reserve (FCR) through market mechanisms. A Virtual Power Plant (VPP) aggregating sources such as wind and solar power and hydrogen electrolysers (HEs) would benefit from participation in this ancillary service market. The methodology proposed in this paper allows to quantify the costs of the participation of the Iberian TSOs in the FCR Cooperation as well as the revenues of a VPP that aggregates wind and solar power and HEs. Results are produced using real data from past market sessions. The Portuguese TSO would have paid roughly 10 M€ to participate in this market in 2022. Using data for the same country and year, a VPP (aggregating the HEs expected to be connected by 2025) would have revenues over 2 M€. © 2023 IEEE.
2022
Authors
Ribeiro F.J.; Lopes J.A.P.; Fernandes F.S.; Soares F.J.; Madureira A.G.;
Publication
SEST 2022 - 5th International Conference on Smart Energy Systems and Technologies
Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) as highly controllable loads in the context of the Frequency Containment Reserve (FCR), in future operation scenarios on the Iberian Peninsula (IP). The research question is whether HEs can mitigate system insecurity regarding frequency or Rate of Change of Frequency (RoCoF) in critical periods of high renewable energy penetration (i.e. low system inertia), due to the fact that these periods will coincide with high volume of green hydrogen production. The proposed simulation platform for analysis consists of a simplified dynamic model developed in MATLAB/Simulink. The results obtained illustrate how HEs can outperform conventional generators on the provision of FCR. It is seen that the reference incident of 1GW loss in the IP in a 2040 low inertia scenario does not lead to insecure values of either frequency or Rate of Change of Frequency (RoCoF). On the other hand, an instantaneous loss of inverter-based resources (IBR) generation following a short-circuit may result in RoCoF violating security thresholds. The obtained results suggest that the HEs expected to be installed in the IP in 2040 may contribute to reduce RoCoF in this case, although this mitigation may be insufficient. The existing FCR mechanism does not fully exploit the fast-ramping capability of HEs; reducing measurement acquisiton delay would not improve results.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.