Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Francisco Miguel Terra
  • Role

    Researcher
  • Since

    15th September 2021
019
Publications

2023

Machine Vision for Smart Trap Bandwidth Optimization and New Threat Identification

Authors
Moura, P; Pinheiro, I; Terra, F; Pinho, T; Santos, F;

Publication
The 3rd International Electronic Conference on Agronomy

Abstract

2023

Synergizing Crop Growth Models and Digital Phenotyping: The Design of a Cost-Effective Internet of Things-Based Sensing Network

Authors
Rodrigues, L; Moura, P; Terra, F; Carvalho, AM; Sarmento, J; dos Santos, FN; Cunha, M;

Publication
The 3rd International Electronic Conference on Agronomy

Abstract

2021

PixelCropRobot, a cartesian multitask platform for microfarms automation

Authors
Terra F.; Rodrigues L.; Magalhaes S.; Santos F.; Moura P.; Cunha M.;

Publication
2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation, IRIA 2021

Abstract
The world society needs to produce more food with the highest quality standards to feed the world population with the same level of nutrition. Microfarms and local food production enable growing vegetables near the population and reducing the operational logistics costs related to post-harvest food handling. However, it isn't economical viable neither efficient to have one person devoted to these microfarms task. To overcome this issue, we propose an open-source robotic solution capable of performing multitasks in small polyculture farms. This robot is equipped with optical sensors, manipulators and other mechatronic technology to monitor and process both biotic and abiotic agronomic data. This information supports the consequent activation of manipulators that perform several agricultural tasks: crop and weed detection, sowing and watering. The development of the robot meets low-cost requirements so that it can be a putative commercial solution. This solution is designed to be relevant as a test platform to support the assembly of new sensors and further develop new cognitive solutions, to raise awareness on topics related to Precision Agriculture. We are looking for a rational use of resources and several other aspects of an evolved, economically efficient and ecologically sustainable agriculture.