Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Gaspar Rego graduated in Physics (Optics and Electronics) by University of Porto (1992). Received the MSc degree in Physics of Laser Communications by University of Essex, Colchester, England (1994). PhD in Engineering Sciences by University of Porto (2006) and Doctor of Science in Physics (“Agregação”) by University of Porto (2013). Currently he is Principal Coordinator Professor ("Full Professor") at the Polytechnic Institute of Viana do Castelo (IPVC), President of the Scientific Council of IPVC and Senior Researcher in the Center of Applied Photonics at INESC TEC. Formerly, he was Vice-President of the Scientific Council of IPVC (4 years), Coordinator of the Electronics and Computer Networks Course (5 years), Coordinator of the Physics Group (15 years), Member of the Scientific Council of ESTG/IPVC (16 years) and Member of the General Council of IPVC (4 years). He co-authored over one-hundred scientific papers in the area of fiber optic componentes and he serves as a reviewer for 17 scientific journals. His current interests are in the areas of fiber optic communications and sensors and also of renewable energy and energetic efficiency.

Interest
Topics
Details

Details

  • Name

    Gaspar Rego
  • Role

    External Research Collaborator
  • Since

    01st April 2000
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    gaspar.rego@inesctec.pt
Publications

2024

Temperature Dependence of the Thermo-Optic Coefficient of GeO2-Doped Silica Glass Fiber

Authors
Rego, GM;

Publication
Sensors

Abstract
In this paper we derived an expression that allows the determination of the thermo-optic coefficient of weakly-guiding germanium-doped silica fibers, based on the thermal behavior of optical fiber devices, such as, fiber Bragg gratings (FBGs). The calculations rely on the full knowledge of the fiber parameters and on the temperature sensitivity of FBGs. In order to validate the results, we estimated the thermo-optic coefficient of bulk GeO2 glass at 293 K and 1.55 µm to be 18.3 × 10-6 K-1. The determination of this value required to calculate a correction factor which is based on the knowledge of the thermal expansion coefficient of the fiber core, the Pockels’ coefficients (p11 = 0.125, p12 = 0.258 and p44 = -0.0662) and the Poisson ratio (? = 0.161) of the SMF-28 fiber. To achieve that goal, we estimated the temperature dependence of the thermal expansion coefficient of GeO2 and we discussed the dispersion and temperature dependence of Pockels’ coefficients. We have presented expressions for the dependence of the longitudinal and transverse acoustic velocities on the GeO2 concentration used to calculate the Poisson ratio. We have also discussed the dispersion of the photoelastic constant. An estimate for the temperature dependence of the thermo-optic coefficient of bulk GeO2 glass is presented for the 200–300 K temperature range. © 2024 by the author.

2023

Temperature Dependence of the Thermo-Optic Coefficient of SiO2 Glass

Authors
Rego, G;

Publication
SENSORS

Abstract
This paper presents a thorough analysis on the temperature dependence of the thermo-optic coefficient, dn/dT, of four bulk annealed pure-silica glass samples (type I-natural quartz: Infrasil 301; type II-quartz crystal powder: Heraeus Homosil; type III-synthetic vitreous silica: Corning 7980 and Suprasil 3001) from room temperature down to 0 K. The three/four term temperature dependent Sellmeier equations and respective coefficients were considered, which results from fitting to the raw data obtained by Leviton et al. The thermo-optic coefficient was extrapolated down to zero Kelvin. We have obtained dn/dT values ranging from 8.16 x 10(-6) up to 8.53 x 10(-6) for the four samples at 293 K and for a wavelength of 1.55 & mu;m. For the Corning 7980 SiO2 glass, the thermo-optic coefficient decreases monotonically, from 8.74 x 10(-6) down to 8.16 x 10(-6), from the visible range up to the third telecommunication window, being almost constant above 1.3 & mu;m. The Ghosh's model was revisited, and it was concluded that the thermal expansion coefficient only accounts for about 2% of the thermo-optic coefficient, and we have obtained an expression for the temperature behavior of the silica excitonic bandgap. Wemple's model was also analyzed where we have also considered the material dispersion in order to determine the coefficients and respective temperature dependences. The limitations of this model were also discussed.

2021

Arc-Induced Long-Period Fiber Gratings at INESC TEC. Part I: Fabrication, Characterization and Mechanisms of Formation

Authors
Rego, G; Caldas, P; Ivanov, OV;

Publication
SENSORS

Abstract
In this work, we reviewed the most important achievements of INESC TEC related to the fabrication of long-period fiber gratings using the electric arc technique. We focused on the fabrication setup, the type of fiber used, and the effect of the fabrication parameters on the gratings' transmission spectra. The theory was presented, as well as a discussion on the mechanisms responsible for the formation of the gratings, supported by the measurement of the temperature reached by the fiber during an electric arc discharge.

2021

Arc-Induced Long-Period Fiber Gratings at INESC TEC. Part II: Properties and Applications in Optical Communications and Sensing

Authors
Rego, G; Caldas, P; Ivanov, OV;

Publication
SENSORS

Abstract
In this work, we review the most important achievements of INESC TEC related to the properties and applications of arc-induced long-period fiber gratings. The polarization dependence loss, the spectral behavior at temperatures ranging from cryogenic up to 1200 degrees C and under exposure to ultraviolet and gamma radiation is described. The dependence of gratings sensitivity on the fabrication parameters is discussed. Several applications in optical communications and sensing domains are referred.

2021

Simulation of the Transmission Spectrum of Long-Period Fiber Gratings Structures with a Propagating Acoustic Shock Front

Authors
Ivanov, OV; Caldas, P; Rego, G;

Publication
SENSORS

Abstract
In this paper, we investigate modification of transmission spectra of long-period fiber grating structures with an acoustic shock front propagating along the fiber. We simulate transmission through inhomogeneous long-period fiber gratings, pi-shift and reflective pi-shift gratings deformed by an acoustic shock front. Coupled mode equations describing interaction of co-propagating modes in a long-period fiber grating structures with inhomogeneous deformation are used for the simulation. Two types of apodization are considered for the grating modulation amplitude, such as uniform and raised-cosine. We demonstrate how the transmission spectrum is produced by interference between the core and cladding modes coupled at several parts of the gratings having different periods. For the pi-shift long-period fiber grating having split spectral notch, the gap between the two dips becomes several times wider in the grating with the acoustic wave front than the gap in the unstrained grating. The behavior of reflective long-period fiber gratings depends on the magnitude of the phase shift near the reflective surface: an additional dip is formed in the 0-shift grating and the short-wavelength dip disappears in the pi-shift grating.