Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

PhD by the Faculty of Engineering of the University of Porto in February 2004, after presentation and discussion of the thesis "Dynamic Test of Analog / Digital Converters - New Methods of Calculation of Functional Characterization Parameters".

Assistant Professor of the Department of Electrotechnical and Computer Engineering of the Faculty of Engineering of the University of Porto (DEEC-FEUP) where he teaches curricular units in the areas of Electronics and Microprocessors.

He is an INESC TEC researcher and coordinator at CRIIS (Center of Industrial Robotics and Intelligent Systems) where he participates in several scientific projects.

His skills and interests include Industrial Robotics, Automation and Control Systems, Industrial Networks, Embedded Systems, Industry 4.0 and Internet of Things.

Interest
Topics
Details

Details

  • Name

    Hélio Mendonça
  • Role

    Senior Researcher
  • Since

    01st January 1995
010
Publications

2023

Tethered Unmanned Aerial Vehicles-A Systematic Review

Authors
Marques, MN; Magalhaes, SA; Dos Santos, FN; Mendonca, HS;

Publication
ROBOTICS

Abstract
In recent years, there has been a remarkable surge in the development and research of tethered aerial systems, thus reflecting a growing interest in their diverse applications. Long-term missions involving aerial vehicles present significant challenges due to the limitations of current battery solutions. Tethered vehicles can circumvent such restrictions by receiving their power from an element on the ground such as a ground station or a mobile terrestrial platform. Tethered Unmanned Aerial Vehicles (UAVs) can also be applied to load transportation achieved by a single or multiple UAVs. This paper presents a comprehensive systematic literature review, with a special focus on solutions published in the last five years (2017-2022). It emphasizes the key characteristics that are capable of grouping publications by application scope, propulsion method, energy transfer solution, perception sensors, and control techniques adopted. The search was performed in six different databases, thereby resulting in 1172 unique publications, from which 182 were considered for inclusion in the data extraction phase of this review. Among the various aircraft types, multirotors emerged as the most widely used category. We also identified significant variations in the application scope of tethered UAVs, thus leading to tailored approaches for each use case, such as the fixed-wing model being predominant in the wind generation application and the lighter-than-air aircraft in the meteorology field. Notably, the classical Proportional-Integral-Derivative (PID) control scheme emerged as the predominant control methodology across the surveyed publications. Regarding energy transfer techniques, most publications did not explicitly describe their approach. However, among those that did, high-voltage DC energy transfer emerged as the preferred solution. In summary, this systematic literature review provides valuable insights into the current state of tethered aerial systems, thereby showcasing their potential as a robust and sustainable alternative to address the challenges associated with long-duration aerial missions and load transportation.

2022

Gerber File Parsing for Conversion to Bitmap Image-The VINCI7D Case Study

Authors
Sousa, RB; Rocha, C; Mendonca, HS; Moreira, AP; Silva, MF;

Publication
IEEE ACCESS

Abstract
The technological market is increasingly evolving as evidenced by the innovative and streamlined manufacturing processes. Printed Circuit Boards (PCB) are widely employed in the electronics fabrication industry, resorting to the Gerber open standard format to transfer the manufacturing data. The Gerber format describes not only metadata related to the manufacturing process but also the PCB image. To be able to map the electronic circuit pattern to be printed, a parser to convert Gerber files into a bitmap image is required. The current literature as well as available Gerber viewers and libraries showed limitations mainly in the Gerber format support, focusing only on a subset of commands. In this work, the development of a recursive descent approach for parsing Gerber files is described, outlining its interpretation and the renderization of 2D bitmap images. All the defined commands in the specification based on Gerber X2 generation were successfully rendered, unlike the tested commercial parsers used in the experiments. Moreover, the obtained results were comparable to those parsers regarding the commands they can execute as well as the ground-truth, emphasizing the accuracy of the proposed approach. Its top-down and recursive architecture allows easy integration with other software regardless of the platform, highlighting its potential inclusion and integration in the production of electronic circuits.

2020

Pneuma: Entrepreneurial science in the fight against the COVID-19 pandemic - a tale of industrialisation and international cooperation

Authors
Mendonça J.M.; Cruz N.; Vasconcelos D.; Sá-Couto C.; Moreira A.P.; Costa P.; Mendonça H.; Pereira A.; Naimi Z.; Miranda V.;

Publication
Journal of Innovation Management

Abstract
When the COVID-19 pandemic hits Portugal in early March 2020, medical doctors, engineers and researchers, with the encouragement of the Northern Region Health Administration, teamed up to develop and build, locally and in a short time, a ventilator that might eventually be used in extreme emergency situations in the hospitals of northern Portugal. This letter tells you the story of Pneuma, a low-cost emergency ventilator designed and built under harsh isolation constraints, that gave birth to derivative designs in Brazil and Morocco, has been industrialized with 200 units being produced, and is now looking forward to the certification as a medical device that will possibly support a go-tomarket launch. Open intellectual property (IP), multi disciplinarity teamwork, fast prototyping and product engineering have shortened to a few months an otherwise quite longer idea-to-product route, clearly demonstrating that when scientific and engineering knowledge hold hands great challenges can be successfully faced.

2019

Parallelization of a Vine Trunk Detection Algorithm For a Real Time Robot Localization System

Authors
Azevedo, F; Shinde, P; Santos, L; Mendes, J; Santos, FN; Mendonca, H;

Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
Developing ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy obtained with Global Navigation Satellite System (GNSS). In this context, a reliable localization system requires an accurate detector for high density of natural/artificial features. In previous works, we presented a novel visual detector for Vineyards Trunks and Masts (ViTruDe) with high levels of detection accuracy. However, its implementation on the most common processing units -central processing units (CPU), using a standard programming language (C/C++), is unable to reach the processing efficiency requirements for real time operation. In this work, we explored parallelization capabilities of processing units, such as graphics processing units (GPU), in order to accelerate the processing time of ViTruDe. This work gives a general perspective on how to parallelize a generic problem in a GPU based solution, while exploring its efficiency when applied to the problem at hands. The ViTruDe detector for GPU was developed considering the constraints of a cost-effective robot to carry-out crop monitoring tasks in steep slope vineyard environments. We compared the proposed ViTruDe implementation on GPU using Compute Unified Compute Unified Device Architecture(CUDA) and CPU, and the achieved solution is over eighty times faster than its CPU counterpart. The training and test data are made public for future research work. This approach is a contribution for an accurate and reliable localization system that is GNSS-free.

2019

System-level study on impulse-radio integration-and-fire (IRIF) transceiver

Authors
Kianpour, I; Hussain, B; Mendonca, HS; Tavares, VG;

Publication
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS

Abstract
Integrate-and-fire (IFN) model of a biological neuron is an amplitude-to-time conversion technique that encodes information in the time-spacing between action potentials (spikes). In principle, this encoding scheme can be used to modulate signals in an impulse radio ultra wide-band (IR-UWB) transmitter, making it suitable for low-power applications, such as in wireless sensor networks (WSN) and biomedical monitoring. This paper then proposes an architecture based on IFN encoding method applied to a UWB transceiver scenario, referred to herein as impulse-radio integrate-and-fire (IRIF) transceiver, followed by a system-level study to attest its effectiveness. The transmitter is composed of an integrate-and-fire modulator, a digital controller and memory block, followed by a UWB pulse generator and filter. At the receiver side, a low-noise amplifier, a squarer, a low-pass filter and a comparator form an energy-detection receiver. A processor reconstructs the original signal at the receiver, and the quality of the synthesized signal is then verified in terms of effective number of bits (ENOB). Finally, a link budget is performed. (C) 2019 Published by Elsevier GmbH.

Supervised
thesis

2023

AI and Android Powered Robotic Solution for Precision Agriculture

Author
Inês Silva Santos

Institution
UP-FEUP

2023

Vision-based Smart Sprayer for Precision Farming

Author
Thaidy Deguchi

Institution
UP-FEUP

2022

Edge AI for Image Analysis and Defect Detection

Author
Diogo Afonso Correia Remião

Institution
UP-FEUP

2022

Otimização do Desempenho de Redes Neuronais em Sistemas Embarcados

Author
João António de Brito Ferreira Gonçalves

Institution
UP-FEUP

2021

Web Application for Supervising and Managing an Automatic Cross-Docking System

Author
Francisco Rego Moreira da Silva Costa

Institution
UP-FEUP