Details
Name
Hugo Oliveira SousaRole
Research AssistantSince
07th December 2020
Nationality
PortugalCentre
Artificial Intelligence and Decision SupportContacts
+351220402963
hugo.o.sousa@inesctec.pt
2024
Authors
Almeida, R; Sousa, H; Cunha, LF; Guimaraes, N; Campos, R; Jorge, A;
Publication
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT V
Abstract
The capabilities of the most recent language models have increased the interest in integrating them into real-world applications. However, the fact that these models generate plausible, yet incorrect text poses a constraint when considering their use in several domains. Healthcare is a prime example of a domain where text-generative trustworthiness is a hard requirement to safeguard patient well-being. In this paper, we present Physio, a chat-based application for physical rehabilitation. Physio is capable of making an initial diagnosis while citing reliable health sources to support the information provided. Furthermore, drawing upon external knowledge databases, Physio can recommend rehabilitation exercises and over-the-counter medication for symptom relief. By combining these features, Physio can leverage the power of generative models for language processing while also conditioning its response on dependable and verifiable sources. A live demo of Physio is available at https://physio.inesctec.pt.
2024
Authors
Nunes, S; Jorge, AM; Amorim, E; Sousa, HO; Leal, A; Silvano, PM; Cantante, I; Campos, R;
Publication
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy.
Abstract
Narratives have been the subject of extensive research across various scientific fields such as linguistics and computer science. However, the scarcity of freely available datasets, essential for studying this genre, remains a significant obstacle. Furthermore, datasets annotated with narratives components and their morphosyntactic and semantic information are even scarcer. To address this gap, we developed the Text2Story Lusa datasets, which consist of a collection of news articles in European Portuguese. The first datasets consists of 357 news articles and the second dataset comprises a subset of 117 manually densely annotated articles, totaling over 50 thousand individual annotations. By focusing on texts with substantial narrative elements, we aim to provide a valuable resource for studying narrative structures in European Portuguese news articles. On the one hand, the first dataset provides researchers with data to study narratives from various perspectives. On the other hand, the annotated dataset facilitates research in information extraction and related tasks, particularly in the context of narrative extraction pipelines. Both datasets are made available adhering to FAIR principles, thereby enhancing their utility within the research community.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.