Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Jaime S. Cardoso holds a Licenciatura (5-year degree) in Electrical and Computer Engineering in 1999, an MSc in Mathematical Engineering in 2005 and a Ph.D. in Computer Vision in 2006, all from the University of Porto.


Cardoso is an Associate Professor with Habilitation at the Faculty of Engineering of the University of Porto (FEUP), where he has been teaching Machine Learning and Computer Vision in Doctoral Programs and multiple courses for the graduate studies. Cardoso is currently a Senior Researcher of the ‘Information Processing and Pattern Recognition’ Area in the Telecommunications and Multimedia Unit of INESC TEC. He is also Senior Member of IEEE and co-founder of ClusterMedia Labs, an IT company developing automatic solutions for semantic audio-visual analysis.


His research can be summed up in three major topics: computer vision, machine learning and decision support systems. Cardoso has co-authored 150+ papers, 50+ of which in international journals. Cardoso has been the recipient of numerous awards, including the Honorable Mention in the Exame Informática Award 2011, in software category, for project “Semantic PACS” and the First Place in the ICDAR 2013 Music Scores Competition: Staff Removal (task: staff removal with local noise), August 2013. The research results have been recognized both by the peers, with 6500+ citations to his publications and the advertisement in the mainstream media several times.

Interest
Topics
Details

Details

  • Name

    Jaime Cardoso
  • Role

    Research Coordinator
  • Since

    15th September 1998
019
Publications

2025

A survey on cell nuclei instance segmentation and classification: Leveraging context and attention

Authors
Nunes, JD; Montezuma, D; Oliveira, D; Pereira, T; Cardoso, JS;

Publication
MEDICAL IMAGE ANALYSIS

Abstract
Nuclear-derived morphological features and biomarkers provide relevant insights regarding the tumour microenvironment, while also allowing diagnosis and prognosis in specific cancer types. However, manually annotating nuclei from the gigapixel Haematoxylin and Eosin (H&E)-stained Whole Slide Images (WSIs) is a laborious and costly task, meaning automated algorithms for cell nuclei instance segmentation and classification could alleviate the workload of pathologists and clinical researchers and at the same time facilitate the automatic extraction of clinically interpretable features for artificial intelligence (AI) tools. But due to high intra- and inter-class variability of nuclei morphological and chromatic features, as well as H&Estains susceptibility to artefacts, state-of-the-art algorithms cannot correctly detect and classify instances with the necessary performance. In this work, we hypothesize context and attention inductive biases in artificial neural networks (ANNs) could increase the performance and generalization of algorithms for cell nuclei instance segmentation and classification. To understand the advantages, use-cases, and limitations of context and attention-based mechanisms in instance segmentation and classification, we start by reviewing works in computer vision and medical imaging. We then conduct a thorough survey on context and attention methods for cell nuclei instance segmentation and classification from H&E-stained microscopy imaging, while providing a comprehensive discussion of the challenges being tackled with context and attention. Besides, we illustrate some limitations of current approaches and present ideas for future research. As a case study, we extend both a general (Mask-RCNN) and a customized (HoVer-Net) instance segmentation and classification methods with context- and attention-based mechanisms and perform a comparative analysis on a multicentre dataset for colon nuclei identification and counting. Although pathologists rely on context at multiple levels while paying attention to specific Regions of Interest (RoIs) when analysing and annotating WSIs, our findings suggest translating that domain knowledge into algorithm design is no trivial task, but to fully exploit these mechanisms in ANNs, the scientific understanding of these methods should first be addressed.

2025

CNN explanation methods for ordinal regression tasks

Authors
Gómez, JB; Cruz, RPM; Cardoso, JS; Gutiérrez, PA; Martínez, CH;

Publication
Neurocomputing

Abstract

2025

CNN explanation methods for ordinal regression tasks

Authors
Barbero-Gómez, J; Cruz, RPM; Cardoso, JS; Gutiérrez, PA; Hervás-Martínez, C;

Publication
NEUROCOMPUTING

Abstract
The use of Convolutional Neural Network (CNN) models for image classification tasks has gained significant popularity. However, the lack of interpretability in CNN models poses challenges for debugging and validation. To address this issue, various explanation methods have been developed to provide insights into CNN models. This paper focuses on the validity of these explanation methods for ordinal regression tasks, where the classes have a predefined order relationship. Different modifications are proposed for two explanation methods to exploit the ordinal relationships between classes: Grad-CAM based on Ordinal Binary Decomposition (GradOBDCAM) and Ordinal Information Bottleneck Analysis (OIBA). The performance of these modified methods is compared to existing popular alternatives. Experimental results demonstrate that GradOBD-CAM outperforms other methods in terms of interpretability for three out of four datasets, while OIBA achieves superior performance compared to IBA.

2025

Learning Ordinality in Semantic Segmentation

Authors
Cruz, RPM; Cristino, R; Cardoso, JS;

Publication
IEEE Access

Abstract

2025

Interpretable AI for medical image analysis: methods, evaluation, and clinical considerations

Authors
Gonçalves, T; Hedström, A; Pahud de Mortanges, A; Li, X; Müller, H; Cardoso, JS; Reyes, M;

Publication
Trustworthy AI in Medical Imaging

Abstract

Supervised
thesis

2023

Automatic recognition of criminals, victims, and illegal behaviour in videos

Author
Leonardo Gomes Capozzi

Institution
UP-FEUP

2023

AI-based Conditional Generation of Diffusion MR Images

Author
Pedro Fernandes Sousa

Institution
UP-FEUP

2023

Machine learning applied to deep space images

Author
Francisco Campos da Silva Ferreira Ribeiro

Institution
UP-FEUP

2023

Explainable Artificial Intelligence for Fair and Transparent Biometrics

Author
Pedro David Carneiro Neto

Institution
UP-FEUP

2023

Introducing Domain Knowledge to Scene Parsing in Autonomous Driving

Author
Rafael Valente Cristino

Institution
UP-FEUP