Details
Name
Joana Magalhães TeixeiraRole
Research AssistantSince
23rd February 2022
Nationality
PortugalCentre
Applied PhotonicsContacts
+351220402301
joana.m.teixeira@inesctec.pt
2025
Authors
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;
Publication
TALANTA
Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.
2025
Authors
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;
Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.
2024
Authors
Teixeira, J; Moreira, FC; Oliveira, J; Rocha, V; Jorge, PAS; Ferreira, T; Silva, NA;
Publication
MEASUREMENT SCIENCE AND TECHNOLOGY
Abstract
Optical tweezers are an interesting tool to enable single cell analysis, especially when coupled with optical sensing and advanced computational methods. Nevertheless, such approaches are still hindered by system operation variability, and reduced amount of data, resulting in performance degradation when addressing new data sets. In this manuscript, we describe the deployment of an automatic and intelligent optical tweezers setup, capable of trapping, manipulating, and analyzing the physical properties of individual microscopic particles in an automatic and autonomous manner, at a rate of 4 particle per min, without user intervention. Reproducibility of particle identification with the help of machine learning algorithms is tested both for manual and automatic operation. The forward scattered signal of the trapped PMMA and PS particles was acquired over two days and used to train and test models based on the random forest classifier. With manual operation the system could initially distinguish between PMMA and PS with 90% accuracy. However, when using test datasets acquired on a different day it suffered a loss of accuracy around 24%. On the other hand, the automatic system could classify four types of particles with 79% accuracy maintaining performance (around 1% variation) even when tested with different datasets. Overall, the automated system shows an increased reproducibility and stability of the acquired signals allowing for the confirmation of the proportionality relationship expected between the particle size and its friction coefficient. These results demonstrate that this approach may support the development of future systems with increased throughput and reliability, for biosciences applications.
2024
Authors
Teixeira, J; Ribeiro, A; Jorge, AS; Silva, A;
Publication
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
Recent advances in optical trapping have opened new opportunities for manipulating micro and nanoparticles, establishing optical tweezers (OT) as a powerful tool for single-cell analysis. Furthermore, intelligent systems have been developed to characterize these particles, as information about their size and composition can be extracted from the scattered radiation signal. In this manuscript, we aim to explore the potential of optical tweezers for the characterization of sub-micron size variations in microparticles. We devised a case study, aiming to assess the limits of the size discrimination ability of an optical tweezer system, using transparent 4.8 µm PMMA particles, functionalized with streptavidin. We focused on the heavily studied streptavidin-biotin system, with streptavidin-functionalized PMMA particles targeting biotinylated bovine serum albumin. This binding process results in an added molecular layer to the particle’s surface, increasing its radius by approximately 7 nm. An automatic OT system was used to trap the particles and acquire their forward-scattered signals. Then, the signals’ frequency components were analyzed using the power spectral density method followed by a dimensionality reduction via the Uniform Manifold Approximation and Projection algorithm. Finally, a Random Forest Classifier achieved a mean accuracy of 94% for the distinction of particles with or without the added molecular layer. Our findings demonstrate the ability of our technique to discriminate between particles that are or are not bound to the biotin protein, by detecting nanoscale changes in the size of the microparticles. This indicates the possibility of coupling shape-changing bioaffinity tools (such as APTMERS, Molecular Imprinted Polymers, or antibodies) with optical trapping systems to enable optical tweezers with analytical capability. © 2024 SPIE.
2024
Authors
Lopes, T; Capela, D; Ferreira, MFS; Teixeira, J; Silva, C; Guimaraes, DF; Jorge, PAS; Silva, NA;
Publication
OPTICAL SENSING AND DETECTION VIII
Abstract
Spectral imaging is a powerful technology that uses spatially referenced spectral signatures to create informative visual maps of sample surfaces that can reveal more than what conventional RGB-visual images can show. Indeed, different spectroscopy modalities can provide different information about the same sample: for instance, Laser-Induced Breakdown Spectroscopy (LIBS) imaging can detect the presence of specific elements on the surface, while Raman imaging can identify the molecular structures and compositions of the sample, both of which have potential applications in various industrial processes, from quality control to material sorting. In the path from science to technology, the increasing accessibility to such solutions and the strong market pull have opened a window of opportunity for innovative multimodal imaging solutions, where information from distinct sources is set to be combined in order to enhance the capabilities of the single modality system. However, the practical implementation of multimodal spectral imaging is still a challenge, despite its theoretical potential, and as such, it is yet to be achieved. In this work, we will go over multimodal spectral knowledge distillation, a disruptive approach to multimodal spectral imaging techniques that tries to explore the combination of two techniques to capitalize on their individual strengths. In specific, this approach allows us to utilize one technique as an autonomous supervisor for the other, leveraging the higher degree of knowledge and interpretability of one of the techniques to increase the performance and transparency of the other. We present some example scenarios with LIBS and HSI and Raman spectroscopy and LIBS, discussing the impact of this new approach for scientific and technological applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.