Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João Gama is a Full Professor at the Faculty of Economy, University of Porto. He is a researcher and vice-director of LIAAD, a group belonging to INESC TEC. He got the PhD degree from the University of Porto, in 2000. He is a IEEE Fellow and EurIA Fellow.

He has worked on several National and European projects on Incremental and Adaptive learning systems, Ubiquitous Knowledge Discovery, Learning from Massive, and Structured Data, etc. He served as Co-Program chair of ECML'2005, DS'2009, ADMA'2009, IDA' 2011, ECMLPKDD'2015, and ECMLPKDD 2025. He served as track chair on Data Streams with ACM SAC from 2007 till 2016. He organized a series of Workshops on Knowledge Discovery from Data Streams with ECML/PKDD, and Knowledge Discovery from Sensor Data with ACM SIGKDD. He is the author of several books on Data Mining (in Portuguese) and authored a monograph on Knowledge Discovery from Data Streams. He authored more than 250 peer-reviewed papers in areas related to machine learning, data mining, and data streams. He is a member of the editorial board of international journals ML, DMKD, TKDE, IDA, NGC, and KAIS. He (co-)supervised more than 12 PhD students and 50 MSc students.

Interest
Topics
Details

Details

  • Name

    João Gama
  • Role

    Research Coordinator
  • Since

    01st April 2009
019
Publications

2025

Early Failure Detection for Air Production Unit in Metro Trains

Authors
Zafra, A; Veloso, B; Gama, J;

Publication
HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024

Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements.

2025

Decision-making systems improvement based on explainable artificial intelligence approaches for predictive maintenance

Authors
Rajaoarisoa, LH; Randrianandraina, R; Nalepa, GJ; Gama, J;

Publication
Eng. Appl. Artif. Intell.

Abstract
To maintain the performance of the latest generation of onshore and offshore wind turbine systems, a new methodology must be proposed to enhance the maintenance policy. In this context, this paper introduces an approach to designing a decision support tool that combines predictive capabilities with anomaly explanations for effective IoT predictive maintenance tasks. Essentially, the paper proposes an approach that integrates a predictive maintenance model with an explicative decision-making system. The key challenge is to detect anomalies and provide plausible explanations, enabling human operators to determine the necessary actions swiftly. To achieve this, the proposed approach identifies a minimal set of relevant features required to generate rules that explain the root causes of issues in the physical system. It estimates that certain features, such as the active power generator, blade pitch angle, and the average water temperature of the voltage circuit protection in the generator's sub-components, are particularly critical to monitor. Additionally, the approach simplifies the computation of an efficient predictive maintenance model. Compared to other deep learning models, the identified model provides up to 80% accuracy in anomaly detection and up to 96% for predicting the remaining useful life of the system under study. These performance metrics and indicators values are essential for enhancing the decision-making process. Moreover, the proposed decision support tool elucidates the onset of degradation and its dynamic evolution based on expert knowledge and data gathered through Internet of Things (IoT) technology and inspection reports. Thus, the developed approach should aid maintenance managers in making accurate decisions regarding inspection, replacement, and repair tasks. The methodology is demonstrated using a wind farm dataset provided by Energias De Portugal. © 2024

2024

Classification of Pulmonary Nodules in 2-[<SUP>18</SUP>F]FDG PET/CT Images with a 3D Convolutional Neural Network

Authors
Alves, VM; Cardoso, JD; Gama, J;

Publication
NUCLEAR MEDICINE AND MOLECULAR IMAGING

Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.

2024

Forecasting financial market structure from network features using machine learning

Authors
Castilho, D; Souza, TTP; Kang, SM; Gama, J; de Carvalho, ACPLF;

Publication
KNOWLEDGE AND INFORMATION SYSTEMS

Abstract
We propose a model that forecasts market correlation structure from link- and node-based financial network features using machine learning. For such, market structure is modeled as a dynamic asset network by quantifying time-dependent co-movement of asset price returns across company constituents of major global market indices. We provide empirical evidence using three different network filtering methods to estimate market structure, namely Dynamic Asset Graph, Dynamic Minimal Spanning Tree and Dynamic Threshold Networks. Experimental results show that the proposed model can forecast market structure with high predictive performance with up to 40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40\%$$\end{document} improvement over a time-invariant correlation-based benchmark. Non-pair-wise correlation features showed to be important compared to traditionally used pair-wise correlation measures for all markets studied, particularly in the long-term forecasting of stock market structure. Evidence is provided for stock constituents of the DAX30, EUROSTOXX50, FTSE100, HANGSENG50, NASDAQ100 and NIFTY50 market indices. Findings can be useful to improve portfolio selection and risk management methods, which commonly rely on a backward-looking covariance matrix to estimate portfolio risk.

2024

SWINN: Efficient nearest neighbor search in sliding windows using graphs

Authors
Mastelini, SM; Veloso, B; Halford, M; de Carvalho, ACPDF; Gama, J;

Publication
INFORMATION FUSION

Abstract
Nearest neighbor search (NNS) is one of the main concerns in data stream applications since similarity queries can be used in multiple scenarios. Online NNS is usually performed on a sliding window by lazily scanning every element currently stored in the window. This paper proposes Sliding Window-based Incremental Nearest Neighbors (SWINN), a graph-based online search index algorithm for speeding up NNS in potentially never-ending and dynamic data stream tasks. Our proposal broadens the application of online NNS-based solutions, as even moderately large data buffers become impractical to handle when a naive NNS strategy is selected. SWINN enables efficient handling of large data buffers by using an incremental strategy to build and update a search graph supporting any distance metric. Vertices can be added and removed from the search graph. To keep the graph reliable for search queries, lightweight graph maintenance routines are run. According to experimental results, SWINN is significantly faster than performing a naive complete scan of the data buffer while keeping competitive search recall values. We also apply SWINN to online classification and regression tasks and show that our proposal is effective against popular online machine learning algorithms.

Supervised
thesis

2023

Comparative Study of VAE and GAN Based Models for Graph Anomaly Detection

Author
Diogo Gomes Abreu

Institution
UP-FEP

2023

Learning from imbalanced data streams

Author
Ehsan Aminian

Institution
UP-FEP

2023

Trustability in data-driven decision models for Public Policy

Author
Sónia Alexandra Carvalho Teixeira

Institution
UP-FEP

2023

Instalação e validação de algoritmos no NDtech para deteção de anomalias

Author
Gustavo Nuno Prata Baldaia

Institution
UP-FEP

2023

Learning from imbalanced data streams

Author
Ehsan Aminian

Institution
UP-FEP