Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João M. P. Cardoso received his PhD degree in Electrical and Computer Engineering from the IST/UTL (Technical University of Lisbon), Lisbon, Portugal in 2001. He is currently Full Professor at the Department of Informatics Eng., Faculty of Eng. of the University of Porto, Porto, Portugal, and a research member of INESC TEC. Before, he was with the IST/UTL (2006-2008), a senior researcher at INESC-ID (2001-2009), and with the University of Algarve (1993-2006). In 2001/2002, he worked for PACT XPP Technologies, Inc., Munich, Germany. He has been involved in the organization and served as a Program Committee member for many international conferences. For example, he was general Co-Chair of IEEE/IFIP EUC’2015 and IEEE CSE’2015, General Chair of FPL’2013, General Co-Chair of ARC’2014 and ARC’2006, Program Co-Chair of ARCS’2016, DASIP’2014, and RAW’2010. He has (co-)authored over 150 scientific publications on subjects related to compilers, embedded systems, and reconfigurable computing. He has coordinated a number of research projects. He is a senior member of IEEE, a member of IEEE Computer Society, and a senior member of ACM.  His research interests include compilation techniques, domain-specific languages, reconfigurable computing, application-specific architectures, and high-performance computing with a particular emphasis in embedded computing.

Interest
Topics
Details

Details

  • Name

    João Paiva Cardoso
  • Role

    Senior Researcher
  • Since

    01st July 2011
002
Publications

2025

First Twenty Years of the International Symposium on Applied Reconfigurable Computing (ARC): A Selection of Papers

Authors
Cardoso, JMP; Najjar, WA;

Publication
Applied Reconfigurable Computing. Architectures, Tools, and Applications - 21st International Symposium, ARC 2025, Seville, Spain, April 9-11, 2025, Proceedings

Abstract
The International Symposium on Applied Reconfigurable Computing (ARC) is an annual forum for the discussion and dissemination of research, notably applying the Reconfigurable Computing (RC) concept to real-world problems. The first edition of ARC took place in 2005, and in 2024, ARC celebrated its 20th edition. During those 20 years, the field of reconfigurable computing saw a tremendous growth in its underlying technology. ARC contributed very significantly to the presentation and dissemination of new ideas, innovative applications, and fruitful discussions, all of which have resulted in the shaping of novel lines of research. Here, we present selected papers from the first 20 years of ARC, that we believe represent the corpus of work and reflect the ARC spirit by covering a broad spectrum of RC applications, benchmarks, tools, and architectures. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

On Improving the HLS Compatibility of Large C/C++ Code Regions

Authors
Santos, T; Bispo, J; Cardoso, JMP; Hoe, JC;

Publication
33rd IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2025, Fayetteville, AR, USA, May 4-7, 2025

Abstract
Heterogeneous CPU-FPGA C/C++ applications may rely on High-level Synthesis (HLS) tools to generate hardware for critical code regions. As typical HLS tools have several restrictions in terms of supported language features, to increase the size and variety of offloaded regions, we propose several code transformations to improve synthesizability. Such code transformations include: struct and array flattening; moving dynamic memory allocations out of a region; transforming dynamic memory allocations into static; and asynchronously executing host functions, e.g., printf(). We evaluate the impact of these transformations on code region size using three real-world applications whose critical regions are limited by non-synthesizable C/C++ language features. © 2025 IEEE.

2025

Ph.D. Project: Holistic Partitioning and Optimization of CPU-FPGA Applications Through Source-to-Source Compilation

Authors
Santos, T; Bispo, J; Cardoso, JMP;

Publication
33rd IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2025, Fayetteville, AR, USA, May 4-7, 2025

Abstract
Critical performance regions of software applications are often accelerated by offloading them onto an FPGA. An efficient end result requires the judicious application of two processes: hardware/software (hw/sw) partitioning, which identifies the regions for offloading, and the optimization of those regions for efficient High-level Synthesis (HLS). Both processes are commonly applied separately, not relying on any potential interplay between them, and not revealing how the decisions made in one process could positively influence the other. This paper describes our primary efforts and contributions made so far, and our work-in-progress, in an approach that combines both hw/sw partitioning and optimization into a unified, holistic process, automated using source-to-source compilation. By using an Extended Task Graph (ETG) representation of a C/C++ application, and expanding the synthesizable code regions, our approach aims at creating clusters of tasks for offloading by a) maximizing the potential optimizations applied to the cluster, b) minimizing the global communication cost, and c) grouping tasks that share data in the same cluster. © 2025 IEEE.

2024

A Flexible-Granularity Task Graph Representation and Its Generation from C Applications (WIP)

Authors
Santos, T; Bispo, J; Cardoso, JMP;

Publication
PROCEEDINGS OF THE 25TH ACM SIGPLAN/SIGBED INTERNATIONAL CONFERENCE ON LANGUAGES, COMPILERS, AND TOOLS FOR EMBEDDED SYSTEMS, LCTES 2024

Abstract
Modern hardware accelerators, such as FPGAs, allow offloading large regions of C/C++ code in order to improve the execution time and/or the energy consumption of software applications. An outstanding challenge with this approach, however, is solving the Hardware/Software (Hw/Sw) partitioning problem. Given the increasing complexity of both the accelerators and the potential code regions, one needs to adopt a holistic approach when selecting an offloading region by exploring the interplay between communication costs, data usage patterns, and target-specific optimizations. To this end, we propose representing a C application as an extended task graph (ETG) with flexible granularity, which can be manipulated through the merging and splitting of tasks. This approach involves generating a task graph overlay on the program's Abstract Syntax Tree (AST) that maps tasks to functions and the flexible granularity operations onto inlining/outlining operations. This maintains the integrity and readability of the original source code, which is paramount for targeting different accelerators and enabling code optimizations, while allowing the offloading of code regions of arbitrary complexity based on the data patterns of their tasks. To evaluate the ETG representation and its compiler, we use the latter to generate ETGs for the programs in Rosetta and MachSuite benchmark suites, and extract several metrics regarding data communication, task-level parallelism, and dataflow patterns between pairs of tasks. These metrics provide important information that can be used by Hw/Sw partitioning methods.

2024

Proceedings of the 14th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies, HEART 2024, Porto, Portugal, June 19-21, 2024

Authors
Josipovic, L; Zhou, P; Shanker, S; Cardoso, JMP; Anderson, J; Yuichiro, S;

Publication
HEART

Abstract

Supervised
thesis

2023

Energy-Computing Efficient Classification Techniques for Mobile-Based HAR Systems

Author
Paulo Jorge Silva Ferreira

Institution
UP-FEUP

2023

Source-to-source Programmable Performance Engineering For High-Performance Computing

Author
Pedro Miguel dos Santos Pinto

Institution
UP-FEUP

2023

A Holistic Approach for Partitioning and Optimizing Software Applications on FPGAs

Author
Tiago Lascasas dos Santos

Institution
UP-FEUP

2023

FPGA-based kNN Accelerators via High-Level Synthesis

Author
André Filipe Ferreira da Silva

Institution
UP-FEUP

2023

Plants as Sensors: First Studies and Prototype Models

Author
Maria Marta Nunes Andrade Lobo dos Santos

Institution
UP-FEUP