Details
Name
João Pedro MendesRole
Assistant ResearcherSince
19th October 2016
Nationality
PortugalCentre
Applied PhotonicsContacts
+351220402301
joao.p.mendes@inesctec.pt
2025
Authors
dos Santos, PSS; Mendes, JP; Pastoriza-Santos, I; Juste, JP; de Almeida, JMMM; Coelho, LCC;
Publication
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.
2024
Authors
Pereira, JM; Mendes, JP; Dias, B; de Almeida, JMMM; Coelho, LCC;
Publication
SENSORS
Abstract
An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 +/- 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 +/- 0.01 RI, expanding up to 310 nm with a 1.35 +/- 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.
2024
Authors
dos Santos, PSS; Mendes, JP; Perez Juste, J; Pastoriza Santos, I; De Almeida, JMMM; Coelho, LCC;
Publication
PHOTONICS RESEARCH
Abstract
Nanoparticle-based plasmonic optical fiber sensors can exhibit high sensing performance, in terms of refractive index sensitivities (RISs). However, a comprehensive understanding of the factors governing the RIS in this type of sensor remains limited, with existing reports often overlooking the presence of surface plasmon resonance (SPR) phenomena in nanoparticle (NP) assemblies and attributing high RIS to plasmonic coupling or waveguiding effects. Herein, using plasmonic optical fiber sensors based on spherical Au nanoparticles, we investigate the basis of their enhanced RIS, both experimentally and theoretically. The bulk behavior of assembled Au NPs on the optical fiber was investigated using an effective medium approximation (EMA), specifically the gradient effective medium approximation (GEMA). Our findings demonstrate that the Au-coated optical fibers can support the localized surface plasmon resonance (LSPR) as well as SPR in particular scenarios. Interestingly, we found that the nanoparticle sizes and surface coverage dictate which effect takes precedence in determining the RIS of the fiber. Experimental data, in line with numerical simulations, revealed that increasing the Au NP diameter from 20 to 90 nm (15% surface coverage) led to an RIS increase from 135 to 6998 nm/RIU due to a transition from LSPR to SPR behavior. Likewise, increasing the surface coverage of the fiber from 9% to 15% with 90 nm Au nanoparticles resulted in an increase in RIS from 1297 (LSPR) to 6998 nm/RIU (SPR). Hence, we ascribe the exceptional performance of these plasmonic optical fibers primary to SPR effects, as evidenced by the nonlinear RIS behavior. The outstanding RIS of these plasmonic optical fibers was further demonstrated in the detection of thrombin protein, achieving very low limits of detection. These findings support broader applications of high-performance NP-based plasmonic optical fiber sensors in areas such as biomedical diagnostics, environmental monitoring, and chemical analysis. (c) 2024 Chinese Laser Press
2024
Authors
Mendes, JP; Coelho, LCC; Ribeiro, JA;
Publication
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024
Abstract
New systems with innovative design to perform measurements combining electrochemistry and surface plasmon resonance (ESPR) are currently a need to overcome the limitations of existent market solutions and expand the research possibilities of this technology. The main goal of this work was to develop a new cell to increase ESPR practical applications in several fields. To do so, a homemade SPR cell, fabricated by 3D-printing technology, was adapted for this purpose by incorporating the conventional 3-electrodes to perform the electrochemical experiments. The developed cell was fully compatible with commercial SPR substrates. After optimization of the homemade ESPR setup to perform the combined electrochemical and SPR measurements, two main applications were explored in this work. The first was the use of ESPR technology as straightforward tool to simultaneously investigate the electrical and optical properties of conducing/nonconducting polymers electrosynthetized on the SPR platforms. The conducting polymer poly(thionine) was used in this work for proof-of- concept. The second application envisaged the use of ESPR approach for simple electrodeposition of materials with enhanced plasmonic properties for sensitivity enhancement of SPR biosensors. For validation of the concept, graphene oxide (GO) was electrochemically reduced on gold substrates aiming to evaluate the plasmonic properties of graphene-modified sensing surfaces.
2024
Authors
Lopes, X; Coelho, LCC; Jorge, PAS; Mendes, JP;
Publication
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024
Abstract
Carbon dioxide (CO2) holds paramount significance in nature, serving as a vital component in Earth's ecosystems. Its evaluation has become increasingly important across various sectors, spanning from environmental conservation to industrial operations. Therefore, this study investigates the viability of utilizing a pH colorimetric dye as a CO2-sensitive material. The material's effectiveness relies on chemical modifications induced in the dye structure through the action of a phase transfer agent, which establishes a stable equilibrium with the dye, thereby promoting its receptivity to CO2 molecules. As the resulting physicochemical changes primarily exhibit colorimetric alterations, an optical system was developed to assess the performance of this material upon exposure to CO2. Employing a dual-wavelength method, the system also incorporates a ratiometric relationship between the two signals to provide the most precise information. The conducted experiments generated promising results when the dye was subjected to varying concentrations of CO2, ranging from 0% to 4%, in comparison to nitrogen (N-2). The application of the ratiometric method emerged as a crucial factor in this system, enabling its potential use in environments characterized by instability. Finally, the dye-sensitive characteristics experienced enhancement through the integration of an ionic liquid within the membrane matrix.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.