Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    João Pedro Pires
  • Role

    Researcher
  • Since

    11th April 2023
001
Publications

2024

Novel Approach for Offshore Photovoltaic Panels Inspection with VTOL UAV

Authors
Morais, R; Martins, JJ; Lima, P; Dias, A; Martins, A; Almeida, J; Silva, E;

Publication
OCEANS 2024 - SINGAPORE

Abstract
Solar energy will contribute to global economic growth, increasing worldwide photovoltaic (PV) solar energy production. More recently, one of the outstanding energy achievements of the last decade has been the development of floating photovoltaic panels. These panels differ from conventional (terrestrial) panels because they occupy space in a more environmentally friendly way, i.e., aquatic areas. In contrast, land areas are saved for other applications, such as construction or agriculture. Developing autonomous inspection systems using unmanned aerial vehicles (UAVs) represents a significant step forward in solar PV technology. Given the frequently remote and difficult-to-access locations, traditional inspection methods are no longer practical or suitable. Responding to these challenges, an innovative inspection framework was developed to autonomously inspect photovoltaic plants (offshore) with a Vertical Takeoff and Landing (VTOL) UAV. This work explores two different methods of autonomous aerial inspection, each adapted to specific scenarios, thus increasing the adaptability of the inspection process. During the flight, the aerial images are evaluated in real-time for the autonomous detection of the photovoltaic modules and the detection of possible faults. This mechanism is crucial for making decisions and taking immediate corrective action. An offshore simulation environment was developed to validate the implemented system.

2024

MANTIS: UAV for Indoor Logistic Operations

Authors
Dias, A; Martins, JJ; Antunes, J; Moura, A; Almeida, J;

Publication
2024 7th Iberian Robotics Conference (ROBOT)

Abstract

2024

Deep Reinforcement Learning Framework for UAV Indoor Navigation

Authors
Martins, JJ; Amaral, A; Dias, A;

Publication
2024 7th Iberian Robotics Conference (ROBOT)

Abstract

2023

Safety Standards for Collision Avoidance Systems in Agricultural Robots - A Review

Authors
Martins, JJ; Silva, M; Santos, F;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
To produce more food and tackle the labor scarcity, agriculture needs safer robots for repetitive and unsafe tasks (such as spraying). The interaction between humans and robots presents some challenges to ensure a certifiable safe collaboration between human-robot, a reliable system that does not damage goods and plants, in a context where the environment is mostly dynamic, due to the constant environment changes. A well-known solution to this problem is the implementation of real-time collision avoidance systems. This paper presents a global overview about state of the art methods implemented in the agricultural environment that ensure human-robot collaboration according to recognised industry standards. To complement are addressed the gaps and possible specifications that need to be clarified in future standards, taking into consideration the human-machine safety requirements for agricultural autonomous mobile robots.

2023

Autonomous UAV Landing Approach for Marine Operations

Authors
Moura, A; Antunes, J; Martins, JJ; Dias, A; Martins, A; Almeida, JM; Silva, E;

Publication
OCEANS 2023 - LIMERICK

Abstract
The use of autonomous vehicles in maritime operations is a technological challenge. In the particular case of autonomous aerial vehicles (UAVs), their application ranges from inspection and surveillance of offshore power plants, and marine life observation, to search and rescue missions. Manually landing UAVs onboard water vessels can be very challenging due to limited space onboard and wave agitation. This paper proposes an autonomous solution for the task of landing commercial multicopter UAVs with onboard cameras on water vessels, based on the detection of a custom landing platform with computer vision techniques. The autonomous landing behavior was tested in real conditions, using a research vessel at sea, where the UAV was able to detect, locate, and safely land on top of the developed landing platform.