Details
Name
Luís Carlos SantosRole
Assistant ResearcherSince
21st August 2017
Nationality
PortugalCentre
Robotics in Industry and Intelligent SystemsContacts
+351220413317
luis.c.santos@inesctec.pt
2024
Authors
Moreira, T; Santos, FN; Santos, L; Sarmento, J; Terra, F; Sousa, A;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Climate change, limited natural resources, and the increase in the world's population impose society to produce food more sustainably, with lower energy and water consumption. The use of robots in agriculture is one of the most promising solutions to change the paradigm of agricultural practices. Agricultural robots should be seen as a way to make jobs easier and lighter, and also a way for people who do not have agricultural skills to produce their food. The PixelCropRobot is a low-cost, open-source robot that can perform the processes of monitoring and watering plants in small gardens. This work proposes a mission supervisor for PixelCropRobot, and general agricultural robots, and presents a prototype of user interface to this mission supervision. The communication between the mission supervisor and the other components of the system is done using ROS2 and MQTT, and mission file standardized. The mission supervisor receives a prescription map, with information about the respective mission, and decomposes them into simple tasks. An A* algorithm then defines the priority of each mission that depends on factors like water requirements, and distance travelled. This concept of mission supervisor was deployed into the PixelCropRobot and was validated in real conditions, showing a enormous potential to be extended to other agricultural robots.
2023
Authors
Aguiar, AS; dos Santos, FN; Santos, LC; Sousa, AJ; Boaventura Cunha, J;
Publication
JOURNAL OF FIELD ROBOTICS
Abstract
Robotics in agriculture faces several challenges, such as the unstructured characteristics of the environments, variability of luminosity conditions for perception systems, and vast field extensions. To implement autonomous navigation systems in these conditions, robots should be able to operate during large periods and travel long trajectories. For this reason, it is essential that simultaneous localization and mapping algorithms can perform in large-scale and long-term operating conditions. One of the main challenges for these methods is maintaining low memory resources while mapping extensive environments. This work tackles this issue, proposing a localization and mapping approach called VineSLAM that uses a topological mapping architecture to manage the memory resources required by the algorithm. This topological map is a graph-based structure where each node is agnostic to the type of data stored, enabling the creation of a multilayer mapping procedure. Also, a localization algorithm is implemented, which interacts with the topological map to perform access and search operations. Results show that our approach is aligned with the state-of-the-art regarding localization precision, being able to compute the robot pose in long and challenging trajectories in agriculture. In addition, we prove that the topological approach innovates the state-of-the-art memory management. The proposed algorithm requires less memory than the other benchmarked algorithms, and can maintain a constant memory allocation during the entire operation. This consists of a significant innovation, since our approach opens the possibility for the deployment of complex 3D SLAM algorithms in real-world applications without scale restrictions.
2022
Authors
Santos, LC; Santos, FN; Valente, A; Sobreira, H; Sarmento, J; Petry, M;
Publication
IEEE ACCESS
Abstract
The Agri-Food production requirements needs a more efficient and autonomous processes, and robotics will play a significant role in this process. Deploying agricultural robots on the farm is still a challenging task. Particularly in slope terrains, where it is crucial to avoid obstacles and dangerous steep slope zones. Path planning solutions may fail under several circumstances, as the appearance of a new obstacle. This work proposes a novel open-source solution called AgRobPP-CA to autonomously perform obstacle avoidance during robot navigation. AgRobPP-CA works in real-time for local obstacle avoidance, allowing small deviations, avoiding unexpected obstacles or dangerous steep slope zones, which could impose a fall of the robot. Our results demonstrated that AgRobPP-CA is capable of avoiding obstacles and high slopes in different vineyard scenarios, with low computation requirements. For example, in the last trial, AgRobPP-CA avoided a steep ramp that could impose a fall to the robot.
2022
Authors
Santos, LC; Santos, FN; Aguiar, AS; Valente, A; Costa, P;
Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
Robotics will play an essential role in agriculture. Deploying agricultural robots on the farm is still a challenging task due to the terrain's irregularity and size. Optimal path planning solutions may fail in larger terrains due to memory requirements as the search space increases. This work presents a novel open-source solution called AgRob Topologic Path Planner, which is capable of performing path planning operations using a hybrid map with topological and metric representations. A local A* algorithm pre-plans and saves local paths in local metric maps, saving them into the topological structure. Then, a graph-based A* performs a global search in the topological map, using the saved local paths to provide the full trajectory. Our results demonstrate that this solution could handle large maps (5 hectares) using just 0.002 % of the search space required by a previous solution.
2022
Authors
Tinoco, V; Silva, MF; Santos, FN; Valente, A; Rocha, LF; Magalhaes, SA; Santos, LC;
Publication
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION
Abstract
Purpose The motivation for robotics research in the agricultural field has sparked in consequence of the increasing world population and decreasing agricultural labor availability. This paper aims to analyze the state of the art of pruning and harvesting manipulators used in agriculture. Design/methodology/approach A research was performed on papers that corresponded to specific keywords. Ten papers were selected based on a set of attributes that made them adequate for review. Findings The pruning manipulators were used in two different scenarios: grapevines and apple trees. These manipulators showed that a light-controlled environment could reduce visual errors and that prismatic joints on the manipulator are advantageous to obtain a higher reach. The harvesting manipulators were used for three types of fruits: strawberries, tomatoes and apples. These manipulators revealed that different kinematic configurations are required for different kinds of end-effectors, as some of these tools only require movement in the horizontal axis and others are required to reach the target with a broad range of orientations. Originality/value This work serves to reduce the gap in the literature regarding agricultural manipulators and will support new developments of novel solutions related to agricultural robotic grasping and manipulation.
Supervised Thesis
2023
Author
Sara Raquel Monteiro da Silva Pereira
Institution
2023
Author
Telma Alexandra Ribeiro Moreira
Institution
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.