Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am a senior researcher at the Centre of Telecommunications and Multimedia of INESC TEC, where I am also the coordinator of the area of Optical and Electronic Technologies. I received the “Licenciatura” degree in 2006 and PhD degree in 2011, both in Electrical and Computer Engineering from the Faculty of Engineering of the University of Porto. Currently I am responsible for the conception and management of R&D projects, coordination of research students and fostering the valorization of research results through new contracts with industry. I was previously involved in teaching of RF/microwave engineering and optical communications as an invited assistant professor at the University of Porto. I am author/co-author of more than 50 publications in international conferences and journals with peer-review, and 1 european patent. I have coordinated several research projects and participated in several EU research projects. My main research interests include coherent optical systems, radio-over-fibre, RF/microwave devices and antennas, and underwater wireless power/communications.

Interest
Topics
Details

Details

  • Name

    Luís Manuel Pessoa
  • Role

    Senior Researcher
  • Since

    01st February 2006
027
Publications

2025

Use Cases for Terahertz Communications: An Industrial Perspective

Authors
Zugno, T; Ciochina, C; Sambhwani, S; Svedman, P; Pessoa, LM; Chen, B; Lehne, PH; Boban, M; Kürner, T;

Publication
IEEE WIRELESS COMMUNICATIONS

Abstract
Thanks to the vast amount of available resources and unique propagation properties, terahertz (THz) frequency bands are viewed as a key enabler for achieving ultrahigh communication performance and precise sensing capabilities in future wireless systems. Recently, the European Telecommunications Standards Institute (ETSI) initiated an Industry Specification Group (ISG) on THz which aims at establishing the technical foundation for subsequent standardization of this technology, which is pivotal for its successful integration into future networks. Starting from the work recently finalized within this group, this article provides an industrial perspective on potential use cases and frequency bands of interest for THz communication systems. We first identify promising frequency bands in the 100 GHz-1 THz range, offering over 500 GHz of available spectrum that can be exploited to unlock the full potential of THz communications. Then, we present key use cases and application areas for THz communications, emphasizing the role of this technology and its advantages over other frequency bands. We discuss their target requirements and show that some applications demand multi-Tb/s data rates, latency below 0.5 ms, and sensing accuracy down to 0.5 cm. Additionally, we identify the main deployment scenarios and outline other enabling technologies crucial for overcoming the challenges faced by THz systems. Finally, we summarize past and ongoing standardization efforts focusing on THz communications, while also providing an outlook toward the inclusion of this technology as an integral part of the future sixth generation (6G) and beyond communication networks.

2025

Human Activity Recognition with a Reconfigurable Intelligent Surface for Wi-Fi 6E

Authors
Paulino, N; Oliveira, M; Ribeiro, FM; Outeiro, L; Pessoa, LM;

Publication
Joint European Conference on Networks and Communications & 6G Summit, EuCNC/6G Summit 2025, Poznan, Poland, June 3-6, 2025

Abstract
Human Activity Recognition (HAR) is the identification and classification of static and dynamic human activities, which find applicability in domains like healthcare, entertainment, security, and cyber-physical systems. Traditional HAR approaches rely on wearable sensors, vision-based systems, or ambient sensing, each with inherent limitations such as privacy concerns or restricted sensing conditions. Instead, Radio Frequency (RF)-based HAR relies on the interaction of RF signals with people to infer activities. Reconfigurable Intelligent Surfaces (RISs) are significant for this use-case by allowing dynamic control over the wireless environment, enhancing the information extracted from RF signals. We present an Hand Gesture Recognition (HGR) approach using our own 6.5 GHz RIS design, which we use to gather a dataset for HGR classification for three different hand gestures. By employing two Convolutional Neural Networks (CNNs) models trained on data gathered under random and optimized RIS configuration sequences, we achieved classification accuracies exceeding 90%. © 2025 IEEE.

2025

Design and Implementation of Scalable 6.5 GHz Reconfigurable Intelligent Surface for Wi-Fi 6E

Authors
Paulino, N; Ribeiro, FM; Outeiro, L; Lopes, PA; Inacio, S; Pessoa, LM;

Publication
2025 19TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP

Abstract
Wi-Fi 6E will enable dense communications with low latency and high throughput, meeting the demands of ever growing network traffic and supporting emergent services such as ultra HD or multi-video streaming, and augmented or virtual reality. However, the 6GHz band suffers from higher path loss and signal attenuation, and poor performance in NLoS conditions. Reconfigurable Intelligent Surfaces (RISs) can address these challenges by providing low-cost directional communications with increased spectral and energy efficiency. However, RIS designs for the WiFi-6E range are under-explored in literature. We present the implementation of an 8x8 RIS tuned for 6.5GHz designed for scalability. We characterize the response of the unit cell, and evaluate the RIS in an anechoic chamber, measuring the far field radiation patterns for several digital beamsteering configurations in a horizontal plane, demonstrating effective signal steering.

2024

Towards truly sustainable IoT systems: the SUPERIOT project

Authors
Katz, M; Paso, T; Mikhaylov, K; Pessoa, L; Fontes, H; Hakola, L; Leppaeniemi, J; Carlos, E; Dolmans, G; Rufo, J; Drzewiecki, M; Sallouha, H; Napier, B; Branquinho, A; Eder, K;

Publication
JOURNAL OF PHYSICS-PHOTONICS

Abstract
This paper provides an overview of the SUPERIOT project, an EU SNS JU (Smart Networks and Services Joint Undertaking) initiative focused on developing truly sustainable IoT systems. The SUPERIOT concept is based on a unique holistic approach to sustainability, proactively developing sustainable solutions considering the design, implementation, usage and disposal/reuse stages. The concept exploits radio and optical technologies to provide dual-mode wireless connectivity and dual-mode energy harvesting as well as dual-mode IoT node positioning. The implementation of the IoT nodes or devices will maximize the use of sustainable printed electronics technologies, including printed components, conductive inks and substrates. The paper describes the SUPERIOT concept, covering the key technical approaches to be used, promising scenarios and applications, project goals and demonstrators which will be developed to the proof-of-concept stage. In addition, the paper briefly discusses some important visions on how this technology may be further developed in the future.

2024

Improved Performance of a 1-Bit RIS by Using Two Switches per Bit Implementation

Authors
Cardoso, F; Matos, S; Pessoa, L; Clemente, A; Costa, J; Fernandes, C; Felicio, J;

Publication
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP

Abstract
Reconfigurable Intelligent Surfaces (RIS) are an enabling technology widely investigated towards 6G. The viability of large active metasurfaces is constrained by the RF performance, cost, and power consumption. The number of switches per unit cell is a key design parameter that designers aim to minimize following cost and power consumption drivers. However, an efficient use of the aperture is ultimately required and although a one-to-one correspondence between number of switches and phase-quantization bits seems intuitive, one may question its impact. Here we present a full-wave evaluation of a 30x30 1-bit reflective RIS, implemented considering two pin diodes per unit cell. The RIS allows scanning up to 60 degrees from 28 to 29 GHz with a maximum aperture efficiency of 22%. This superior performance provides tantalizing evidence that the multiple switches per bit approach should not be discarded a priori due to its apparent higher complexity.

Supervised
thesis

2023

Sub-THZ Graphene/MXene-Based Antenna Array Design and Experimental Demonstration

Author
Sofia Isabel Silva Inácio

Institution
INESCTEC

2023

Localização indoor através de superfícies inteligentes reconfiguráveis

Author
Rafael Amaral Pina Aguiar

Institution
INESCTEC

2023

A Machine Learning Model for Indoor Positioning of Bluetooth Receivers

Author
Francisco Pêgo dos Santos Monteiro

Institution
INESCTEC

2023

Localização indoor através de superfícies inteligentes reconfiguráveis

Author
Rafael Amaral Pina Aguiar

Institution
INESCTEC

2023

Development of a near-field anechoic chamber

Author
Henrique José Silva Bastos Sul da Rocha

Institution
INESCTEC