Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

S. Mahdi Homayouni is a Researcher at the Centre for Enterprise Systems Engineering (CESE), INESC TEC, Porto, Portugal, and an invited Assistant Professor in Operations Management at the Faculdade de Economia (FEP), Universidade do Porto. He has been an Assistant Professor at the Department of Industrial Engineering, Islamic Azad University, Lenjan Branch, Isfahan, Iran from Feb 2011 to January 2017. He holds a Ph.D. and a Master’s in industrial and Systems Engineering, from Universiti Putra Malaysia and a Bachelor of Engineering in Industrial Production Engineering from Azad University of Najafabad, Iran. Mahdi’s research focus is on developing exact and heuristic solutions approaches for the supply chain and operations management problems, particularly, operations planning and scheduling problems in advanced manufacturing systems and seaport container terminals, promoting sustainability objectives. Https://scholar.google.com/citations?user=D0QT05YAAAAJ&hl=en Http://www.linkedin.com/profile/preview?locale=en_US&trk=prof-0-sb-preview-primary-button Http://orcid.org/0000-0001-6833-9316

Interest
Topics
Details

Details

  • Name

    Mahdi Homayouni
  • Role

    External Research Collaborator
  • Since

    01st February 2017
003
Publications

2024

Energy-efficient job shop scheduling problem with transport resources considering speed adjustable resources

Authors
Fontes, DBMM; Homayouni, SM; Fernandes, JC;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
This work extends the energy-efficient job shop scheduling problem with transport resources by considering speed adjustable resources of two types, namely: the machines where the jobs are processed on and the vehicles that transport the jobs around the shop-floor. Therefore, the problem being considered involves determining, simultaneously, the processing speed of each production operation, the sequence of the production operations for each machine, the allocation of the transport tasks to vehicles, the travelling speed of each task for the empty and for the loaded legs, and the sequence of the transport tasks for each vehicle. Among the possible solutions, we are interested in those providing trade-offs between makespan and total energy consumption (Pareto solutions). To that end, we develop and solve a bi-objective mixed-integer linear programming model. In addition, due to problem complexity we also propose a multi-objective biased random key genetic algorithm that simultaneously evolves several populations. The computational experiments performed have show it to be effective and efficient, even in the presence of larger problem instances. Finally, we provide extensive time and energy trade-off analysis (Pareto front) to infer the advantages of considering speed adjustable machines and speed adjustable vehicles and provide general insights for the managers dealing with such a complex problem.

2023

A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation

Authors
Homayouni, SM; Fontes, DBMM; Goncalves, JF;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
This work addresses the flexible job shop scheduling problem with transportation (FJSPT), which can be seen as an extension of both the flexible job shop scheduling problem (FJSP) and the job shop scheduling problem with transportation (JSPT). Regarding the former case, the FJSPT additionally considers that the jobs need to be transported to the machines on which they are processed on, while in the latter, the specific machine processing each operation also needs to be decided. The FJSPT is NP-hard since it extends NP-hard problems. Good-quality solutions are efficiently found by an operation-based multistart biased random key genetic algorithm (BRKGA) coupled with greedy heuristics to select the machine processing each operation and the vehicles transporting the jobs to operations. The proposed approach outperforms state-of-the-art solution approaches since it finds very good quality solutions in a short time. Such solutions are optimal for most problem instances. In addition, the approach is robust, which is a very important characteristic in practical applications. Finally, due to its modular structure, the multistart BRKGA can be easily adapted to solve other similar scheduling problems, as shown in the computational experiments reported in this paper.

2023

A Multi-Population BRKGA for Energy-Efficient Job Shop Scheduling with Speed Adjustable Machines

Authors
Homayouni, SM; Fontes, DBMM; Fontes, FACC;

Publication
METAHEURISTICS, MIC 2022

Abstract
Energy-efficient scheduling has become a new trend in industry and academia, mainly due to extreme weather conditions, stricter environmental regulations, and volatile energy prices. This work addresses the energy-efficient Job shop Scheduling Problem with speed adjustable machines. Thus, in addition to determining the sequence of the operations for each machine, one also needs to decide on the processing speed of each operation. We propose a multi-population biased random key genetic algorithm that finds effective solutions to the problem efficiently and outperforms the state-of-the-art solution approaches.

2023

A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources

Authors
Fontes, DBMM; Homayouni, SM; Goncalves, JF;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
This work addresses a variant of the job shop scheduling problem in which jobs need to be transported to the machines processing their operations by a limited number of vehicles. Given that vehicles must deliver the jobs to the machines for processing and that machines need to finish processing the jobs before they can be transported, machine scheduling and vehicle scheduling are intertwined. A coordi-nated approach that solves these interrelated problems simultaneously improves the overall performance of the manufacturing system. In the current competitive business environment, and integrated approach is imperative as it boosts cost savings and on-time deliveries. Hence, the job shop scheduling problem with transport resources (JSPT) requires scheduling production operations and transport tasks simultane-ously. The JSPT is studied considering the minimization of two alternative performance metrics, namely: makespan and exit time. Optimal solutions are found by a mixed integer linear programming (MILP) model. However, since integrated production and transportation scheduling is very complex, the MILP model can only handle small-sized problem instances. To find good quality solutions in reasonable com-putation times, we propose a hybrid particle swarm optimization and simulated annealing algorithm (PSOSA). Furthermore, we derive a fast lower bounding procedure that can be used to evaluate the perfor-mance of the heuristic solutions for larger instances. Extensive computational experiments are conducted on 73 benchmark instances, for each of the two performance metrics, to assess the efficacy and efficiency of the proposed PSOSA algorithm. These experiments show that the PSOSA outperforms state-of-the-art solution approaches and is very robust.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

2023

A bi-objective multi-population biased random key genetic algorithm for joint scheduling quay cranes and speed adjustable vehicles in container terminals

Authors
Fontes, DBMM; Homayouni, SM;

Publication
FLEXIBLE SERVICES AND MANUFACTURING JOURNAL

Abstract
This work formulates a mixed-integer linear programming (MILP) model and proposes a bi-objective multi-population biased random key genetic algorithm (mp-BRKGA) for the joint scheduling of quay cranes and speed adjustable vehicles in container terminals considering the dual-cycling strategy. Under such a strategy, a combination of loading and unloading containers are handled by a set of cranes (moved between ships and vehicles) and transported by a set of vehicles (transported between the quayside and the storage area). The problem consists of four components: crane scheduling, vehicle assignment, vehicle scheduling, and speed assignment both for empty and loaded journey legs. The results show that an approximated true Pareto front can be found by solving the proposed MILP model and that the mp-BRKGA finds uniformly distributed Pareto fronts, close to the true ones. Additionally, the results clearly demonstrate the advantages of considering speed adjustable vehicles since both the makespan and the energy consumption can be considerably reduced.