Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Maria Eduarda Caldeira
  • Role

    External Research Collaborator
  • Since

    22nd March 2022
001
Publications

2024

MST-KD: Multiple Specialized Teachers Knowledge Distillation for Fair Face Recognition

Authors
Caldeira, E; Cardoso, JS; Sequeira, AF; Neto, PC;

Publication
CoRR

Abstract

2023

Compressed Models Decompress Race Biases: What Quantized Models Forget for Fair Face Recognition

Authors
Neto, PC; Caldeira, E; Cardoso, JS; Sequeira, AF;

Publication
International Conference of the Biometrics Special Interest Group, BIOSIG 2023, Darmstadt, Germany, September 20-22, 2023

Abstract
With the ever-growing complexity of deep learning models for face recognition, it becomes hard to deploy these systems in real life. Researchers have two options: 1) use smaller models; 2) compress their current models. Since the usage of smaller models might lead to concerning biases, compression gains relevance. However, compressing might be also responsible for an increase in the bias of the final model. We investigate the overall performance, the performance on each ethnicity subgroup and the racial bias of a State-of-the-Art quantization approach when used with synthetic and real data. This analysis provides a few more details on potential benefits of performing quantization with synthetic data, for instance, the reduction of biases on the majority of test scenarios. We tested five distinct architectures and three different training datasets. The models were evaluated on a fourth dataset which was collected to infer and compare the performance of face recognition models on different ethnicity.