Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Mariana Curado Malta
  • Role

    Senior Researcher
  • Since

    24th January 2024
Publications

2025

Contributions for the Development of Personae: Method for Creating Persona Templates (MCPT)

Authors
Couto, F; Curado Malta, M;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
This paper contributes to developing a Method for Creating Persona Templates (MCPT), addressing a significant gap in user-centred design methodologies. Utilising qualitative data collection and analysis techniques, MCPT offers a systematic approach to developing robust and context-oriented persona templates. MCPT was created by applying the Design Science Research (DSR) methodology, and it incorporates multiple iterations for template refinement and validation among project stakeholders; all of the proposed steps of this method were based on theoretical contributions. Furthermore, MCPT was tested and refined within a real-life R&D project focusing on developing a digital platform e-marketplace for short agrifood supply chains in two iteration cycles. MCPT fills a critical void in persona research by providing detailed instructions for each step of template development. By involving the target audience, users, and project stakeholders, MCPT adds rigour to the persona creation process, enhancing the quality and relevance of personae casts. This paper contributes to the body of knowledge by offering an initial proposal of a comprehensive method for creating persona templates within diverse projects and contexts. Further research should explore MCPT’s adaptability to different settings and projects, thus refining its effectiveness and extending its utility in user-centred design practices. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

IC-SNI: measuring nodes' influential capability in complex networks through structural and neighboring information

Authors
Nandi, S; Malta, MC; Maji, G; Dutta, A;

Publication
KNOWLEDGE AND INFORMATION SYSTEMS

Abstract
Influential nodes are the important nodes that most efficiently control the propagation process throughout the network. Among various structural-based methods, degree centrality, k-shell decomposition, or their combination identify influential nodes with relatively low computational complexity, making them suitable for large-scale network analysis. However, these methods do not necessarily explore nodes' underlying structure and neighboring information, which poses a significant challenge for researchers in developing timely and efficient heuristics considering appropriate network characteristics. In this study, we propose a new method (IC-SNI) to measure the influential capability of the nodes. IC-SNI minimizes the loopholes of the local and global centrality and calculates the topological positional structure by considering the local and global contribution of the neighbors. Exploring the path structural information, we introduce two new measurements (connectivity strength and effective distance) to capture the structural properties among the neighboring nodes. Finally, the influential capability of a node is calculated by aggregating the structural and neighboring information of up to two-hop neighboring nodes. Evaluated on nine benchmark datasets, IC-SNI demonstrates superior performance with the highest average ranking correlation of 0.813 with the SIR simulator and a 34.1% improvement comparing state-of-the-art methods in identifying influential spreaders. The results show that IC-SNI efficiently identifies the influential spreaders in diverse real networks by accurately integrating structural and neighboring information.

2024

IS-PEW: Identifying Influential Spreaders Using Potential Edge Weight in Complex Networks

Authors
Nandi, S; Malta, MC; Maji, G; Dutta, A;

Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 3, COMPLEX NETWORKS 2023

Abstract
Identifying the influential spreaders in complex networks has emerged as an important research challenge to control the spread of (mis)information or infectious diseases. Researchers have proposed many centrality measures to identify the influential nodes (spreaders) in the past few years. Still, most of them have not considered the importance of the edges in unweighted networks. To address this issue, we propose a novel centrality measure to identify the spreading ability of the Influential Spreaders using the Potential Edge Weight method (IS-PEW). Considering the connectivity structure, the ability of information exchange, and the importance of neighbouring nodes, we measure the potential edge weight. The ranking similarity of spreaders identified by IS-PEW and the baseline centrality methods are compared with the Susceptible-Infectious-Recovered (SIR) epidemic simulator using Kendall's rank correlation. The spreading ability of the top-ranking spreaders is also compared for five different percentages of top-ranking node sets using six different real networks.

2024

Promoting Interoperability on the Datasets of the Arrowheads Findings of the Chalcolithic and the Early/Middle Bronze Age

Authors
Curado-Malta, M; Diez-Platas, ML; Araujo, A; Muralha, J; Oliveira, M;

Publication
LINKING THEORY AND PRACTICE OF DIGITAL LIBRARIES, PT I, TPDL 2024

Abstract
Archaeological discoveries can benefit enormously from linked open data (LOD) technologies since, as new objects are discovered, data about them can be placed in the LOD cloud and instantly accessible to third parties. This article presents a framework developed to publish LOD on arrowheads from the Chalcolithic and Early/Middle Bronze Age chronologies (2800/2900 BC to 1500 BC) found in the last 25 years of excavations on an archaeological site in Portugal. These arrowheads were kept in boxes, hidden from the possibility of being studied and viewed by interested parties. The framework encompasses a metadata application profile (MAP) and tools to be used with this MAP, such as a namespace, two metadata schemas and eight vocabulary coding schemes. The MAP domain model was developed with the support of the scientific literature about this type of arrowheads, and the team integrated two archaeologists. This framework was created with the design philosophy of maximising data interoperability, so terms from the CIDOC CRM conceptual models and other vocabularies widely used in the LOD cloud were used. The MAP was tested using a set of seven arrowheads, which proved, in the first instance, the viability of the developed MAP. The team plans to test the model in future work with arrowheads of other excavations.

2024

Normalized strength-degree centrality: identifying influential spreaders for weighted network

Authors
Sadhu, S; Namtirtha, A; Malta, MC; Dutta, A;

Publication
SOCIAL NETWORK ANALYSIS AND MINING

Abstract
Influential spreaders are key nodes in networks that maximize or control the spreading processes. Many real-world systems are represented as weighted networks, and several indexing methods, such as weighted betweenness, closeness, k-shell decomposition, voterank, and mixed degree decomposition, among others, have been proposed to identify these influential nodes. However, these methods often face limitations such as high computational cost, non-monotonic rankings, and reliance on tunable parameters. To address these issues, this paper introduces a new tunable parameter-free method, Normalized Strength-Degree Centrality (nsd), which efficiently combines a node's normalized degree and strength to measure its influence across various network structures. Experimental results on eleven real and synthetic weighted networks show that nsd outperforms the existing methods in accurately identifying influential spreaders, strongly correlating to the Weighted Susceptible-Infected-Recovered (WSIR) model. Additionally, nsd is a parameter-free method that does not require time-consuming preprocessing to estimate rankings.