Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Pedro Nuno Marques
  • Role

    Research Assistant
  • Since

    29th July 2021
Publications

2024

eDNA survey in the Arctic with an Autonomous Underwater Vehicle

Authors
Martins, A; Almeida, C; Carneiro, A; Silva, P; Marques, P; Lima, AP; Almeida, JM; Magalhaes, C;

Publication
OCEANS 2024 - SINGAPORE

Abstract
The eDNA autonomous biosampler results from a line of research aimed at developing systems for sampling and collecting marine biological data, and for collecting environmental DNA. Environmental DNA is a tool that has been increasingly used in the biological monitoring of aquatic environments, as it is a non-invasive method with very promising results when it comes to assessing biological diversity. In this sense, the automation of this method has the potential to greatly increase the temporal and spatial resolution of current biological monitoring programs in aquatic environments. The system has been developed in a partnership between research teams at the Centre for Robotics and Autonomous Systems (CRAS - INESC TEC) and CIIMAR and has been tested in multiple operational scenarios, including the Arctic, where it was attached to the AUV IRIS.

2023

Biosampler IS-ABS: eDNAuto filtration unit for vehicle integration (v2.0)

Authors
Carneiro, A; Silva, G; Marques, P; Marques, A; Dias, N; Almeida, C; Magalhaes, C; Martins, A;

Publication
OCEANS 2023 - LIMERICK

Abstract
Water bodies are complex and interconnected systems that play a crucial role in both our environment and our economy. Studying these water bodies is therefore essential but collecting and analyzing water samples can be challenging, particularly when dealing with large volumes of water. This article presents a system capable of autonomously filtering large volumes of water through standard marine biology filters and preserving them to later be analyzed. The system's preliminary results are presented in this paper.