Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Born at 71/09/15, he has a degree and master on Applied Mathematics and he is PhD in Engineering Science since 2005. The research field of interest is statistics, data analysis and the Box-Cox transformation.

Interest
Topics
Details

Details

  • Name

    Rui Gonçalves
  • Role

    External Research Collaborator
  • Since

    23rd February 2013
Publications

2024

Exact vs Approximated ML Estimation for the Box-Cox Transformation

Authors
Gonçalves, R;

Publication
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022

Abstract
The Box-Cox (BC) transformation is widely used in data analysis for achieving approximate normality in the transformed scale. The transformation is only possible for non-negative data. This positiveness requirement implies a truncation to the distribution on the transformed scale and the distribution in the transformed scale is truncated normal. This fact has consequences for the estimation of the parameters specially if the truncated probability is high. In the seminal paper Box and Cox proposed to estimate parameters using the normal distribution which in practice means to ignore any consequences of the truncation on the estimation process. In this work we present the framework for exact likelihood estimation on the PN distribution to which we call method m(1) and how to calculate the parameters estimates using consistent estimators. We also present a pseudo-Likelihood function for the same model not taking into account truncation and allowing to replace parameters mu and sigma for their estimates. We call m(2) to this estimation method. We conclude that for cases where the truncated probability is low both methods give good estimation results. However for larger values of the truncated probability the m(2) method does not present the same efficiency.

2022

Probability Laws for Nearly Gaussian Random Variables and Application

Authors
Goncalves, R;

Publication
INNOVATIONS IN INDUSTRIAL ENGINEERING

Abstract
In an earlier work we described and applied a methodology to find an adequate distribution for Nearly Gaussian (NG) random variables. In this work, we compare two different methods, m1 and m2 to estimate a power transform parameter for NG random variables. The m1 method is heuristic and based on sample kurtosis. Herein, we describe and apply it using a new reduced data set. The second method m2 is based on the maximization of a pseudo-log-likelihood function. As an application, we compare the performance of each method using high power statistical tests for the null hypothesis of normality. The data we use are the daily errors in the forecasts of maximum and minimum temperatures in the city of Porto. We show that the high kurtosis of the original data is due to high correlation among data. We also found that although consistent with normality the data is better fitted by distributions of the power normal (PN) family than by the normal distribution. Regarding the comparison of the two parameter estimation methods we found that the m1 provides higher p-values for the observed statistics tests except for the Shapiro-Wilk test.

2019

The Power Normal Distribution

Authors
Goncalves, R;

Publication
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018)

Abstract
The Power Normal (PN) family of distributions is obtained by inverting the Box-Cox (BC) transformation over a truncated normal (TN) (or for some cases normal) random variable. In this paper we explore the PN distribution. We give a formula for the ordinary moments and considering the bivariate PN (BPN) distribution we calculate the marginal and conditional probability density functions (pdf). We prove that they are not univariate PN distributed. We also calculate the correlation curve and we fit a power law model.

2014

BHP universality in energy sources

Authors
Ferreira, H; Goncalves, R; Pinto, AA;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract

2012

Erratum: Evaluation of the EC8-3 confidence factors for the characterization of concrete strength in existing structures (Materials and Structures DOI:10.1617/s11527-012-9868-4)

Authors
Romao, X; Goncalves, R; Costa, A; Delgado, R;

Publication
Materials and Structures/Materiaux et Constructions

Abstract