Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Rui Campos has a PhD degree in Electrical and Computers Engineering in 2011, from University of Porto. Currently, he leads the “Wireless Networks” research area (http://win.inescporto.pt) of the Centre for Telecommunications and Multimedia consisting of 30 researchers, and he is an IEEE Senior Member. He has coordinated several research projects, including: SIMBED in Fed4FIRE+ Open Call 3, UGREEN, BLUECOM+, MareCom, MTGrid, the WiFIX action approved in CONFINE Open Call 1, Mare-Fi, Under-Fi, ReCoop, and HiperWireless. Rui Campos has participated in several research projects, including the following European projects: H2020 Fed4FIRE+, H2020 RAWFIE, FP7 SUNNY, FP7 CONFINE, FP6 Ambient Networks Phase 1, and FP6 Ambient Networks Phase 2. His research interests include medium access control, radio resource management, mobility management, and network auto-configuration in emerging wireless networks, with special focus on flying networks, maritime networks, and underwater networks.

Interest
Topics
Details

Details

  • Name

    Rui Lopes Campos
  • Role

    Research Coordinator
  • Since

    17th February 2003
036
Publications

2024

Trajectory-Aware Rate Adaptation for Flying Networks

Authors
Queiros, R; Ruela, J; Fontes, H; Campos, R;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Despite the trend towards ubiquitous wireless connectivity, there are scenarios where the communications infrastructure is damaged and wireless coverage is insufficient or does not exist, such as in natural disasters and temporary crowded events. Flying networks, composed of Unmanned Aerial Vehicles (UAV), have emerged as a flexible and cost-effective solution to provide on-demand wireless connectivity in these scenarios. UAVs have the capability to operate virtually everywhere, and the growing payload capacity makes them suitable platforms to carry wireless communications hardware. The state of the art in the field of flying networks is mainly focused on the optimal positioning of the flying nodes, while the wireless link parameters are configured with default values. On the other hand, current link adaptation algorithms are mainly targeting fixed or low mobility scenarios. We propose a novel rate adaptation approach for flying networks, named Trajectory Aware Rate Adaptation (TARA), which leverages the knowledge of flying nodes’ movement to predict future channel conditions and perform rate adaptation accordingly. Simulation results of 100 different trajectories show that our solution increases throughput by up to 53% and achieves an average improvement of 14%, when compared with conventional rate adaptation algorithms such as Minstrel-HT. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2023

Traffic-aware gateway placement and queue management in flying networks

Authors
Coelho, A; Campos, R; Ricardo, M;

Publication
AD HOC NETWORKS

Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as adequate platforms to carry communications nodes, including Wi-Fi Access Points and cellular Base Stations. This has led to the concept of flying networks composed of UAVs as a flexible and agile solution to provide on-demand wireless connectivity anytime, anywhere. However, state of the art works have been focused on optimizing the placement of the access network providing connectivity to ground users, overlooking the backhaul network design. In order to improve the overall Quality of Service (QoS) offered to ground users, the placement of Flying Gateways (FGWs) and the size of the queues configured in the UAVs need to be carefully defined to meet strict performance requirements. The main contribution of this article is a traffic-aware gateway placement and queue management (GPQM) algorithm for flying networks. GPQM takes advantage of knowing in advance the positions of the UAVs and their traffic demand to determine the FGW position and the queue size of the UAVs, in order to maximize the aggregate throughput and provide stochastic delay guarantees. GPQM is evaluated by means of ns-3 simulations, considering a realistic wireless channel model. The results demonstrate significant gains in the QoS offered when GPQM is used.

2023

On the Analysis of Computational Delays in Reinforcement Learning-Based Rate Adaptation Algorithms

Authors
Trancoso, R; Pinto, J; Queirós, R; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
Several research works have applied Reinforcement Learning (RL) algorithms to solve the Rate Adaptation (RA) problem in Wi-Fi networks. The dynamic nature of the radio link requires the algorithms to be responsive to changes in link quality. Delays in the execution of the algorithm due to implementional details may be detrimental to its performance, which in turn may decrease network performance. These delays can be avoided to a certain extent. However, this aspect has been overlooked in the state of the art when using simulated environments, since the computational delays are not considered. In this paper, we present an analysis of computational delays and their impact on the performance of RL-based RA algorithms, and propose a methodology to incorporate the experimental computational delays of the algorithms from running in a specific target hardware, in a simulation environment. Our simulation results considering the real computational delays showed that these delays do, in fact, degrade the algorithm’s execution and training capabilities which, in the end, has a negative impact on network performance. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2023

Wireless technologies towards 6G

Authors
Campos, R; Ricardo, M; Pouttu, A; Correia, LM;

Publication
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING

Abstract
This Special Issue originates from the international conference 2021 Joint EuCNC & 6G Summit (Joint European Conference on Networks and Communications and 6G Summit), which was held in June 2021 in virtual format. The Technical Programme Chairs of the conference selected the best papers and invited authors to submit an extended version of their paper by at least one-third of their length. Only the top ranked papers were invited to this Special Issue, in order to fulfil its purpose. The main target was to collect and present quality research contributions in the most recent activities related to technologies, systems and networks beyond 5G. Through this Special Issue, the state-of-the-art is presented and the new challenges highlighted, regarding the latest advances on systems and network perspectives that are already being positioned beyond 5G, bridging as well with the evolution of 5G, including applications and trials. Therefore, the motivation for this Special Issue is to present the latest and finest results on the evolution of research of mobile and wireless communications, coming, but not exclusively (since Joint EuCNC & 6G Summit is a conference open to the whole research community), from projects co-financed by the European Commission within its R&D programmes.

2023

Position-Based Machine Learning Propagation Loss Model Enabling Fast Digital Twins of Wireless Networks in ns-3

Authors
Almeida, EN; Fontes, H; Campos, R; Ricardo, M;

Publication
PROCEEDINGS OF THE 2023 WORKSHOP ON NS-3, WNS3 2023

Abstract
Digital twins have been emerging as a hybrid approach that combines the benefits of simulators with the realism of experimental testbeds. The accurate and repeatable set-ups replicating the dynamic conditions of physical environments, enable digital twins of wireless networks to be used to evaluate the performance of next-generation networks. In this paper, we propose the Position-based Machine Learning Propagation Loss Model (P-MLPL), enabling the creation of fast and more precise digital twins of wireless networks in ns-3. Based on network traces collected in an experimental testbed, the P-MLPL model estimates the propagation loss suffered by packets exchanged between a transmitter and a receiver, considering the absolute node's positions and the traffic direction. The P-MLPL model is validated with a test suite. The results show that the P-MLPL model can predict the propagation loss with a median error of 2.5 dB, which corresponds to 0.5x the error of existing models in ns-3. Moreover, ns-3 simulations with the P-MLPL model estimated the throughput with an error up to 2.5 Mbit/s, when compared to the real values measured in the testbed.

Supervised
thesis

2023

Reinforcement Learning-Based Positioning Algorithm for Relay Nodes in Aerial Networks

Author
Gabriella Fernandes Pantaleão

Institution
INESCTEC

2023

Reinforcement Learning-Based Positioning Algorithm for Relay Nodes in Aerial Networks

Author
Gabriella Fernandes Pantaleão

Institution
INESCTEC

2023

Context-aware Wireless Underwater Communications using a Multimodal Approach

Author
João Pedro Teixeira Loureiro

Institution
INESCTEC

2023

Reinforcement Learning-Based Positioning Algorithm for Relay Nodes in Aerial Networks

Author
Gabriella Fernandes Pantaleão

Institution
INESCTEC

2023

Smart Aerial Networks using Machine Learning for Cross-Layer Optimization

Author
Rúben Miguel Rei Queirós

Institution
INESCTEC