Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Salvador Carvalhosa was born in Porto in 1992. He completed his Master's Degree in 2019 at the Faculty of Engineering of the University of Porto (FEUP) and began his PhD in Sustainable Energy Systems in 2021 at FEUP in partnership with MIT Portugal. He has been a Researcher at INESC TEC since 2021 at the Center for Energy Systems where he participates in projects related to Energy Communities. His R&D interests are related to Electric Vehicles, Renewable Energies and Energy Communities. He has published 3 articles in international conferences.

Interest
Topics
Details

Details

  • Name

    Salvador Carvalhosa
  • Role

    Researcher
  • Since

    01st May 2021
004
Publications

2024

Hybrid Energy Storage System sizing model based on load recurring pattern identification

Authors
Lucas, A; Golmaryami, S; Carvalhosa, S;

Publication
JOURNAL OF ENERGY STORAGE

Abstract
Hybrid Energy Storage Systems (HESS) have attracted attention in recent years, promising to outperform single batteries in some applications. This can be in decreasing the total cost of ownership, extending the combined lifetime, having higher versatility in providing multiple services, and reducing the physical hosting location. The sizing of hybrid systems in such a way that proves to optimally replace a single battery is a challenging task. This is particularly true if such a tool is expected to be a practical one, applicable to different inputs and which can provide a range of optimal solutions for decision makers as a support. This article provides exactly that, presenting a technology -independent sizing model for Hybrid Energy Storage Systems. The model introduces a three-step algorithm: the first block employs a clustering of time series using Dynamic Time Warping (DTW), to analyze the most recurring pattern. The second block optimizes the battery dispatch using Linear Programming (LP). Lastly, the third block identifies an optimal hybridization area for battery size configuration (H indicator), and offers practical insights for commercial technology selection. The model is applied to a real dataset from an office building to verify the tool and provides viable and non-viable hybridization sizing examples. For validation, the tool was compared to a full optimization approach and results are consistent both for the single battery sizing, as well as for confirming the hybrid combination dimensioning. The optimal solution potential (H) in the example provided is 0.13 and the algorithm takes a total of 30s to run a full year of data. The model is a Pythonbased tool, which is openly accessible on GitHub, to support and encourage further developments and use.

2024

Review of Digital Transformation in the Energy Sector: Assessing Maturity and Adoption Levels of Digital Services and Products via Fuzzy Logic

Authors
Carvalhosa, S; Lucas, A; Neumann, C; Türk, A;

Publication
IEEE ACCESS

Abstract
Digitalization has begun as a transformative force within the energy sector, reforming traditional practices and paving the way for enhanced operational efficiency and sustainability. Enabled by key technologies such as smart meters, digitalization embodies a paradigm shift in energy management. Nonetheless, it is crucial to recognize that these enabling technologies are only the catalysts and not the end goal. This paper presents a comprehensive overview of digital services and products in the energy sector, with a specific focus on emerging technologies like AI and Connected Data Spaces. The objective of this review paper is to assess the maturity and adoption levels of these digital solutions, seeking to draw insights into the factors influencing their varying levels of success. This maturity and adoption assessment was carried out by applying a Fuzzy logic approach which allowed us to compensate for the lack of detailed information in current literature. By analyzing the reasons behind high maturity-low adoption and vice-versa, this study seeks to cast light on the dynamics shaping the digital transformation of the energy sector.

2024

Electric Vehicle Charging Method for Existing Residential Condominiums

Authors
Carvalhosa, S; Ferreira, JR; Araújo, RE;

Publication
IEEE ACCESS

Abstract
This research study presents an optimized approach for charging electric vehicles (EVs) in existing residential multi dwelling buildings. The proposed solution tackles the problem in two distinct, but complementary ways. First it takes advantage, in a novel way, of the existing electrical infrastructure by taping directly into the main feeder of the building, second it distributes the power in real time by leveraging in an optimized methodology. The aim of this methodology is to minimize the discrepancy between the desired and final state of charge (SOC) of EVs by the end of each charging session. To achieve this, the method leverages on commuting and charging preferences of EV owners, as well as the electrical infrastructure of residential buildings. To dynamically adjust the charging power for each EV in real-time, an optimized charging management system is employed. This system solves a non-linear minimization optimization problem that considers various parameters, including the initial SOC of each EV, the desired final SOC, the available charging time, and the available charging power. To assess the effectiveness of the proposed methodology, comparative analysis was conducted against a baseline methodology commonly used in practice. The results show that the optimized approach significantly outperforms the non-optimized methods, particularly in high demand scenarios. In these scenarios, the optimized methodology allows for a 200% increase in the supplied energy to the buildings' EV fleet, as well as more than doubling the range made available to users when compared to traditional approaches. In conclusion, this research work offers a robust and effective solution for charging EVs in residential buildings.

2024

Battery Control for Node Capacity Increase for Electric Vehicle Charging Support

Authors
Ahmad, MW; Lucas, A; Carvalhosa, SMP;

Publication
ENERGIES

Abstract
The integration of electric vehicles (EVs) into the power grid poses significant challenges and opportunities for energy management systems. This is especially concerning for parking lots or private building condominiums in which refurbishing is not possible or is costly. This paper presents a real-time monitoring approach to EV charging dynamics with battery storage support over a 24 h period. By simulating EV demand, state of charge (SOC), and charging and discharging events, we provide insights into the operational strategies for energy storage systems to ensure maximum charging simultaneity factor through internal power enhancement. The study uses a time-series analysis of EV demand, contrasting it with the battery's SOC, to dynamically adjust charging and discharging actions within the constraints of the upstream infrastructure capacity. The model incorporates parameters such as maximum power capacity, energy storage capacity, and charging efficiencies, to reflect realistic conditions. Results indicate that real-time SOC monitoring, coupled with adaptive charging strategies, can mitigate peak demands and enhance the system's responsiveness to fluctuating loads. This paper emphasizes the critical role of real-time data analysis in the effective management of energy resources in existing parking lots and lays the groundwork for developing intelligent grid-supportive frameworks in the context of growing EV adoption.

2023

Optmization algorithm for the charging management of electric vehicles in multi-dwelling residential buildings

Authors
Carvalhosa, SM; Ferreira, JRDP; Araújo, RE;

Publication
2023 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VPPC

Abstract
This paper presents a new strategy for recharging electric vehicles in residential buildings. The proposed approach minimizes the difference between desired and final state of charge (SOC) by the end of the charging period, by adjusting the charging power for each vehicle in real-time. A non-linear optimization problem is formulated, considering the initial and final SOC, as well as available charging time, and total available power. Results were compared to a baseline and show that the proposed solution outperforms the currently most used nonoptimized method, particularly in high demand scenarios, where we achieve values of 9.3% of curtailed range when compared with the non-optimized methodology.