Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Tânia Fontes is a researcher at INESC TEC and is financed by National Funds through the FCT - Portuguese Foundation for Science and Technology (10.54499/2022.07805.CEECIND/CP1740/CT0001). Her area of expertise is urban mobility, people and cargo, focusing in particular on the assessment of the environmental impacts. Her research interests include the areas of transport policy assessment and the use of data science to support the design of decision support systems. Tânia has led several research projects in the area of passenger and cargo mobility, particularly in urban spaces (e-LOG and opti-MOVES). Besides these, she has actively collaborated on other research projects (eg Seamless Mobility, SmartDecision, CIVITAS-ELAN), consultancy projects (e.g. CIM-TS, VoxPop), and Cost actions (eg ARTS, TEA, TRANSITS). In 2016, she spent 6 months in Beijing to study the impacts of transport policies on the city's air quality. She regularly publishes in journals in the field of transport and environment. Tânia holds a PhD in Sciences Applied to the Environment from the University of Aveiro (2010). She also has a degree in Computer Engineering (ISEP, 2007) and Environmental Engineering (UFP, 2001).

Details

Details

  • Name

    Tânia Daniela Fontes
  • Role

    Assistant Researcher
  • Since

    01st November 2015
004
Publications

2024

Multidimensional subgroup discovery on event logs

Authors
Ribeiro, J; Fontes, T; Soares, C; Borges, JL;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
Subgroup discovery (SD) aims at finding significant subgroups of a given population of individuals characterized by statistically unusual properties of interest. SD on event logs provides insight into particular behaviors of processes, which may be a valuable complement to the traditional process analysis techniques, especially for low -structured processes. This paper proposes a scalable and efficient method to search significant SD rules on frequent sequences of events, exploiting their multidimensional nature. With this method, it is intended to identify significant subsequences of events where the distribution of values of some target aspect is significantly different than the same distribution for the entire event log. A publicly available real -life event log of a Dutch hospital is used as a running example to demonstrate the applicability of our method. The proposed approach was applied on a real -life case study based on the public transport of a medium size European city (Porto, Portugal), for which the event data consists of 133 million smartcard travel validations from buses, trams and trains. The results include a characterization of mobility flows over multiple aspects, as well as the identification of unexpected behaviors in the flow of commuters (public transport). The generated knowledge provided a useful insight into the behavior of travelers, which can be applied at operational, tactical and strategic business levels, enhancing the current view of the transport services to transport authorities and operators.

2024

Many-objective sectorization for last-mile delivery optimization: A decision support system

Authors
Torres, G; Fontes, T; Rodrigues, AM; Rocha, P; Ribeiro, J; Ferreira, JS;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
The efficient last-mile delivery of goods involves complex challenges in optimizing driver sectors and routes. This problem tends to be large-scale and involves several criteria to meet simultaneously, such as creating compact sectors, balancing the workload among drivers, minimizing the number of undelivered packages and reducing the dissimilarity of sectors on different days. This work proposes a Decision Support System (DSS) that allows decision-makers to select improved allocation strategies to define sectors. The main contribution is an interactive DSS tool that addresses a many-objective (more than 3 objectives) sectorization problem with integrated routing. It establishes a global allocation strategy and uses it as a benchmark for the created daily allocations and routes. A Preference-Inspired Co-Evolutionary Algorithm with Goal vectors using Mating Restriction (PICEA-g-mr) is employed to solve the many-objective optimization problem. The DSS also includes a visualization tool to aid decision-makers in selecting the most suitable allocation strategy. The approach was tested in a medium-sized Metropolitan Area and evaluated using resource evaluation metrics and visualization methods. The proposed DSS deals effectively and efficiently with the sectorization problem in the context of last-mile delivery by producing a set of viable and good-quality allocations, empowering decision-makers in selecting better allocation strategies. Focused on enhancing service efficiency and driver satisfaction, the DSS serves as a valuable tool to improve overall service quality.

2024

Impact of Kitchen Natural Gas Use on Indoor NO2 Levels and Human Health: A Case Study in Two European Cities

Authors
Barros, N; Fontes, T;

Publication
APPLIED SCIENCES-BASEL

Abstract
Natural gas (NG) is commonly used in kitchens, powering stoves, ovens, and other appliances. While it is known for its efficiency and convenience, NG contributes to the release of nitrogen dioxide (NO2) and can have significant implications for human health. In this study, the importance of the use of NG in kitchens on human exposure to NO2 was analyzed. An extensive literature review in the field was conducted, and the NO2 levels were assessed in kitchens with NG cookers in Aveiro and electric cookers in Porto, both in Portugal. Higher levels of NO2 were found in kitchens in Aveiro, where NO2 levels outdoors are lower than in Porto. This pollutant can spread to other rooms, especially when ventilation is lacking, which is particularly concerning during colder seasons and at night. As around 70% of the time is spent at home, this can have a significant impact on human exposure to NO2. Therefore, although Aveiro has low levels of NO2 outdoors, its population may be exposed to much higher levels of this pollutant than the Porto population, a city with air quality issues, but predominantly using electric cookers. This finding emphasizes the need for the stricter regulation of NG use indoors to protect human health and also suggests a shift in human health protection policies from mere monitoring/control of outdoor air quality to a comprehensive assessment of human exposure, including exposure to indoor air quality.

2024

Evaluating parcel delivery strategies in different terrain conditions

Authors
Silva, V; Vidal, K; Fontes, T;

Publication
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE

Abstract
The impacts of the e-commerce growth have increased the urgency in designing and adopting new alternative delivery strategies. In this context, it is important to consider the particularities of each city like its terrain conditions. This article aims at exploring the impact of road slopes on parcel delivery operations, and how they condition the adoption and implementation of alternative, more sustainable delivery strategies. To this end, a microscopic traffic simulator was used to evaluate different delivery strategies including ICE vans, electric vans, and cargo bikes in three different slope scenarios. This evaluation was based on a medium-sized European city and conducted by comparing the same parcel delivery route at three levels: operational (route length, duration, and waiting time), energy consumption, and emissions. The results revealed that as the road slopes increased, more time was needed to deliver all packages, waiting times grew longer, and vehicles' energy consumption and emissions levels intensified. From the flat terrain to the most sloped terrain, there was an increase in duration of around 5% for traditional and electric vans, 35% for large cargo bikes, and 14% for small cargo bikes. The ICE van suffers a 105% increase in waiting time; the electric van 71%; the large cargo bike 68% and the small cargo bike 52%. Energy consumption also varied, with ICE vans and small cargo bikes consuming nearly 30% more energy, while electric vans and large cargo bikes consumed 4% and 60% more energy, respectively. The ICE van's emissions of CO, HC, PMx, NOx, and CO2 are 13%, 10%, 1%, 20%, and 29% higher, respectively. Moreover, in flatter terrains, the better strategies are the electric van or a large cargo bike, while in more sloped terrains, the most adequate one is the electric van. These findings suggest that the electric van is the best overall strategy for different terrains and different decision-making profiles, ranking first in more than 70% of the profiles across all three terrains.

2024

Bi-LSTM Neural Networks for Traffic Flow Prediction: An Empirical Evaluation

Authors
Alves, BA; Fontes, T; Rossetti, R;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
Traffic flow prediction is a critical component of intelligent transportation systems. This study introduces a Bidirectional Long Short-Term Memory (Bi-LSTM) neural network for predicting traffic flow. The model utilizes traffic, weather, and holiday data. To evaluate the model’s performance, three experiments were assessed: E1, using all available inputs; E2, excluding weather conditions; and E3 excluding holiday information. The model was trained using the previous 3, 12, and 24 h of data to predict traffic flow for the next 12 h, and its performance was compared with a LSTM model. Traffic predictions benefit from having a large and diverse dataset. Bi-LSTM model can capture temporal patterns more effectively than the LSTM. The MAPE value is improved in around 1% when we increase the historical from 3h to 24 h, plus 1% if Bi-LSTM model is used. Better results are obtained when contextual information is provided. These results reinforce the potential that deep learning models have in the prediction of traffic conditions and the impact of a large and varied dataset in the accuracy of these predictions. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Supervised
thesis

2023

Knowledge Extraction from Social Networks for Near Real-Time Transport Network Evaluation: An Ensemble Approach

Author
Eduardo Leandro Dias Carneiro

Institution
INESCTEC

2023

Evaluating the sustainability of e-commerce deliveries strategies: A simulation-based approach

Author
Kristen Vidal Diniz de Almeid

Institution
INESCTEC

2022

Definition of a conceptual model to asses the environmental sustainability of parcel delivery: the case of fashion industry

Author
Pedro Aidos

Institution
INESCTEC

2022

Transportation management in an era of big data: from data to knowledge

Author
Pedro Francisco Mendes Bessa

Institution
INESCTEC

2022

Bus fleet transition: assessment of the economic impacts

Author
João Fernandes

Institution
INESCTEC