Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Vítor Tinoco
  • Role

    Researcher
  • Since

    15th January 2021
001
Publications

2025

A review of advanced controller methodologies for robotic manipulators

Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhaes, SA; Oliveira, PM;

Publication
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL

Abstract
With the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.

2025

A review of advanced controller methodologies for robotic manipulators

Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhães, SA; Oliveira, PM;

Publication
International Journal of Dynamics and Control

Abstract

2024

Pruning End-Effectors State of the Art Review

Authors
Oliveira, F; Tinoco, V; Valente, A; Pinho, TM; Cunha, JB; Santos, F;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part I

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2023

Design and Control Architecture of a Triple 3 DoF SCARA Manipulator for Tomato Harvesting

Authors
Tinoco, V; Silva, MF; Santos, FN; Magalhaes, S; Morais, R;

Publication
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
The increasing world population, growing need for agricultural products, and labour shortages have driven the growth of robotics in agriculture. Tasks such as fruit harvesting require extensive hours of work during harvest periods and can be physically exhausting. Autonomous robots bring more efficiency to agricultural tasks with the possibility of working continuously. This paper proposes a stackable 3 DoF SCARA manipulator for tomato harvesting. The manipulator uses a custom electronic circuit to control DC motors with an endless gear at each joint and uses a camera and a Tensor Processing Unit (TPU) for fruit detection. Cascaded PID controllers are used to control the joints with magnetic encoders for rotational feedback, and a time-of-flight sensor for prismatic movement feedback. Tomatoes are detected using an algorithm that finds regions of interest with the red colour present and sends these regions of interest to an image classifier that evaluates whether or not a tomato is present. With this, the system calculates the position of the tomato using stereo vision obtained from a monocular camera combined with the prismatic movement of the manipulator. As a result, the manipulator was able to position itself very close to the target in less than 3 seconds, where an end-effector could adjust its position for the picking.

2022

SCARA Self Posture Recognition Using a Monocular Camera

Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Filipe, V;

Publication
IEEE ACCESS

Abstract
Robotic manipulators rely on feedback obtained from rotary encoders for control purposes. This article introduces a vision-based feedback system that can be used in an agricultural context, where the shapes and sizes of fruits are uncertain. We aim to mimic a human, using vision and touch as manipulator control feedback. This work explores the use of a fish-eye lens camera to track a SCARA manipulator with coloured markers on its joints for the position estimation with the goal to reduce costs and increase reliability. The Kalman Filter and the Particle Filter are compared and evaluated in terms of accuracy and tracking abilities of the marker's positions. The estimated image coordinates of the markers are converted to world coordinates using planar homography, as the SCARA manipulator has co-planar joints and the coloured markers share the same plane. Three laboratory experiments were conducted to evaluate the system's performance in joint angle estimation of a manipulator. The obtained results are promising, for future cost effective agricultural robotic arms developments. Besides, this work presents solutions and future directions to increase the joint position estimation accuracy.