Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2023

Optical Fiber Flowmeter Based on a Michelson Interferometer

Authors
Monteiro, CS; Ferreira, M; Mendes, JP; Coelho, LCC; Silva, S; Frazão, O;

Publication
EPJ Web of Conferences

Abstract
In this work, an optical fiber flowmeter based on a Michelson interferometer is presented. The Michelson interferometer uses a long period fiber grating (LPFG) to couple light to the cladding modes followed by a section of a GO-coated single mode fiber (SMF). By radiating the GO thin film, it will increase its temperature changing the effective refractive index of the optical cavity of the Michelson interferometer. By placing the sensor on a gas flow, its temperature surface will decrease in a proportional manner to the flow rate. The sensor was studied in both static and dynamic dry nitrogen flow, attaining an absolute sensitivity of 17.4 ± 0.8 pm/(L.min-1) and a maximum response time of 1.1 ± 0.4 s.

2023

Temperature Dependence of the Thermo-Optic Coefficient of SiO2 Glass

Authors
Rego, G;

Publication
SENSORS

Abstract
This paper presents a thorough analysis on the temperature dependence of the thermo-optic coefficient, dn/dT, of four bulk annealed pure-silica glass samples (type I-natural quartz: Infrasil 301; type II-quartz crystal powder: Heraeus Homosil; type III-synthetic vitreous silica: Corning 7980 and Suprasil 3001) from room temperature down to 0 K. The three/four term temperature dependent Sellmeier equations and respective coefficients were considered, which results from fitting to the raw data obtained by Leviton et al. The thermo-optic coefficient was extrapolated down to zero Kelvin. We have obtained dn/dT values ranging from 8.16 x 10(-6) up to 8.53 x 10(-6) for the four samples at 293 K and for a wavelength of 1.55 & mu;m. For the Corning 7980 SiO2 glass, the thermo-optic coefficient decreases monotonically, from 8.74 x 10(-6) down to 8.16 x 10(-6), from the visible range up to the third telecommunication window, being almost constant above 1.3 & mu;m. The Ghosh's model was revisited, and it was concluded that the thermal expansion coefficient only accounts for about 2% of the thermo-optic coefficient, and we have obtained an expression for the temperature behavior of the silica excitonic bandgap. Wemple's model was also analyzed where we have also considered the material dispersion in order to determine the coefficients and respective temperature dependences. The limitations of this model were also discussed.

2023

Exploring the hidden dimensions of an optical extreme learning machine

Authors
Silva, D; Ferreira, T; Moreira, FC; Rosa, CC; Guerreiro, A; Silva, NA;

Publication
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS

Abstract
Extreme Learning Machines (ELMs) are a versatile Machine Learning (ML) algorithm that features as the main advantage the possibility of a seamless implementation with physical systems. Yet, despite the success of the physical implementations of ELMs, there is still a lack of fundamental understanding in regard to their optical implementations. In this context, this work makes use of an optical complex media and wavefront shaping techniques to implement a versatile optical ELM playground to gain a deeper insight into these machines. In particular, we present experimental evidences on the correlation between the effective dimensionality of the hidden space and its generalization capability, thus bringing the inner workings of optical ELMs under a new light and opening paths toward future technological implementations of similar principles.

2023

A Multi-Plasmonic Approach for Simultaneous Measurements based on a D-Shaped Photonic Crystal Fiber Sensor: from Temperature to Optical Dispersion

Authors
Romeiro, F; Cardoso, P; Silva, O; Costa, CWA; Giraldi, MR; Santos, L; Baptista, M; Guerreiro, A;

Publication
Journal of Microwaves, Optoelectronics and Electromagnetic Applications

Abstract
The growing demand for multiparameter sensors includes compact devices accompanied by simple calibration processes to distinguish the outputs from each other. This paper evaluates a scheme to determine multiple parameters of a medium using localized surface plasmon resonances (SPR) excited on a Dshaped photonic crystal fiber (PCF) partially covered by two gold layers of different thicknesses. We demonstrate that the proposed sensing platform, once customized to characterize the possible dispersive profiles of the refractive index of the analyte, also allows interrogating the temperature of a sample from a linear relationship. Since the plasmonic resonances are excited at separated and low crosstalk spectral channels, different sensing responses can be obtained simultaneously in the same location of the D-shaped PCF. These features turn out the SPR sensor a suitable tool for simultaneous monitoring of optical dispersion and temperature. © 2023 SBMO/SBMag.

2023

Deep learning-based fully automatic segmentation of whole-body [18F]FDG PET/CT images from lymphoma patients: addition of CT data has poor impact on networks performance

Authors
Constantino, CS; Oliveira, FPM; Leocádio, S; Silva, M; Oliveira, C; Castanheira, JC; Silva, A; Vaz, S; Teixeira, R; Neves, M; Lúcio, P; Joao, C; Vinga, S; Costa, DC;

Publication
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING

Abstract

2023

Refractometric sensitivity of Bloch surface waves : perturbation theory calculation and experimental validation

Authors
Dias, BS; De Almeida, JMMM; Coelho, LCC;

Publication
OPTICS LETTERS

Abstract
The sensitivity of one-dimensional Bloch surface wave (BSW) sensors to external refractive index variations using Kretschmann's configuration is calculated analytically by employing first-order perturbation theory for both TE and TM modes. This approach is then validated by com- parison with both transfer matrix method simulations and experimental results for a chosen photonic crystal structure. Experimental sensitivities of (8.4 +/- 0.2)x102 and (8.4 +/- 0.4)x102 nm/RIU were obtained for the TE and TM BSW modes, corresponding to errors of 0.02% and 4%, respectively, when comparing with the perturbation the- ory approach. These results provide interesting insights into photonic crystal design for Bloch surface wave sensing by casting light into the important parameters related with sen- sor performance.(c) 2023 Optica Publishing Group

  • 12
  • 233