Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2022

A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Fernandes, CS; Frazao, O; Costa, JCWA; Santos, JL;

Publication
SENSORS

Abstract
In many areas, the analysis of a cylindrical structure is necessary, and a form to analyze it is by evaluating the diameter changes. Some areas can be cited: pipelines for oil or gas distribution and radial growth of trees whose diameter changes are directly related to irrigation and the radial expansion since it depends on the water soil deficit. For some species, these radial variations can change in around 5 mm. This paper proposes and experimentally investigates a sensor based on a core diameter mismatch technique for diameter changes measurement. The sensor structure is a combination of a cylindrical piece developed using a 3D printer and a Mach-Zehnder interferometer. The pieces were developed to assist in monitoring the diameter variation. It is formed by splicing an uncoated short section of MMF (Multimode Fiber) between two standard SMFs (Singlemode Fibers) called SMF-MMF-SMF (SMS), where the MMF length is 15 mm. The work is divided into two main parts. Firstly, the sensor was fixed at two points on the first developed piece, and the diameter reduction caused dips or peaks shift of the transmittance spectrum due to curvature and strain influence. The fixation point (FP) distances used are: 5 mm, 10 mm, and 15 mm. Finally, the setup with the best sensitivity was chosen, from first results, to develop another test with an optimization. This optimization is performed in the printed piece where two supports are created so that only the strain influences the sensor. The results showed good sensitivity, reasonable dynamic range, and easy setup reproduction. Therefore, the sensor could be used for diameter variation measurement for proposed applications.

2022

Optical Strain Gauge Prototype Based on a High Sensitivity Balloon-like Interferometer and Additive Manufacturing

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Frazao, O; Costa, JCWA; Santos, JL;

Publication
SENSORS

Abstract
An optical strain gauge based on a balloon-like interferometer structure formed by a bent standard single-mode fiber combined with a 3D printer piece has been presented and demonstrated, which can be used to measure displacement. The interferometer has a simple and compact size, easy fabrication, low cost, and is repeatable. The sensor is based on the interference between the core and cladding modes. This is caused by the fiber's curvature because when light propagates through the curved balloon-shaped interferometer region, a portion of it will be released from the core limitation and coupled to the cladding. The balloon has an axial displacement as a result of how the artwork was constructed. The sensor head is sandwiched between two cantilevers such that when there is a displacement, the dimension associated with the micro bend is altered. The sensor response as a function of displacement can be determined using wavelength shift or intensity change interrogation techniques. Therefore, this optical strain gauge is a good option for applications where structure displacement needs to be examined. The sensor presents a sensitivity of 55.014 nm for displacement measurements ranging from 0 to 10 mm and a strain sensitivity of 500.13 pm/mu epsilon.

2022

Unscrambling spectral interference and matrix effects in Vitis vinifera Vis-NIR spectroscopy: Towards analytical grade 'in vivo' sugars and acids quantification

Authors
Martins, RC; Barroso, TG; Jorge, P; Cunha, M; Santos, F;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Analytical grade 'in vivo' plant metabolic quantification using spectroscopy is a key enabling technology for precision agriculture.Current methods such as PLS, ANN and LS-SVM are non-optimal for resolving spectral interference and matrix effects to provide similar results to the analytical chemistry laboratory. This research presents a new self-learning artificial intelligence (SL-AI) method based on the search of covariance modes. These isolate the different modes of interference present in spectral data, allowing the consistent quantification of constituents. A review of the state-of-the-art methods with the figures of merit mean absolute standard error percentage (MASEP) and Pearson correlation coefficient (R) is presented for comparison and discussion. 707 grapes were quantified for glucose, fructose, malic and tartaric acids in five wine-making and one table grape varieties, and used to benchmark the new method against the state-of-the-art methodologies: partial least squares, local partial least squares, artificial neural networks and least squares support vector machines. SL-AI provides consistent quantifications, whereas previous methods exhibit data-driven performance dependence. Pearson correlations of 0.93 to 0.99 and MASEP of 3.70% to 7.33% were obtained with the new methodology. Local partial least squares, the method with the best benchmarks from literature, achieved correlations of 0.81 to 0.94 and MASEP of 8.00% to 13.4%. The covariance mode isolates a particular interference, providing a direct relationship between spectral inference and constituent concentrations, consistent with the Beer-Lambert law. Such quantifies non-dominant absorbance constituents (e.g. sugars and acids), which is a significant step towards 'in vivo' plant physiology-based precision agriculture.

2022

A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

Authors
Arcadio, F; Seggio, M; Del Prete, D; Buonanno, G; Mendes, J; Coelho, LCC; Jorge, PAS; Zeni, L; Bossi, AM; Cennamo, N;

Publication
NANOMATERIALS

Abstract
Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.

2022

Effects of Pulse Duration in Laser-induced Breakdown Spectroscopy

Authors
Ferreira, MFS; Silva, NA; Guimarães, D; Martins, RC; Jorge, PAS;

Publication
U.Porto Journal of Engineering

Abstract
Laser-induced breakdown spectroscopy (LIBS) is a technique that leverages atomic emission towards element identification and quantification. While the potential of the technology is vast, it still struggles with obstacles such as the variability of the technique. In recent years, several methods have exploited modifications to the standard implementation to work around this problem, mostly focused on the laser side to increase the signal-to-noise ratio of the emission. In this paper, we explore the effect of pulse duration on the detected signal intensity using a tunable LIBS system that consists of a versatile fiber laser, capable of emitting square-shaped pulses with a duration ranging from 10 to 100 ns. Our results show that, by tuning the duration of the pulse, it is possible to increase the signal-to-noise ratio of relevant elemental emission lines, an effect that we relate with the computed plasma temperature and associated density for the ion species. Despite the limitations of the work due to the low-resolution and small range of the spectrometer used, the preliminary results pave an interesting path towards the design of controllable LIBS systems that can be tailored to increase the signal-to-noise ratio and thus be useful for the deployment of more sensitive instruments both for qualitative and quantitative purposes. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

2022

Towards robust calibration models for laser-induced breakdown spectroscopy using unsupervised clustered regression techniques

Authors
Silva N.A.; Capela D.; Ferreira M.; Gonçalves F.; Lima A.; Guimarães D.; Jorge P.A.S.;

Publication
Results in Optics

Abstract
One of the caveats of laser-induced breakdown spectroscopy technique is the performance for quantification purposes, in particular when the matrix of the sample is complex or the problem spans over a wide range of concentrations. These two questions are key issues for geology applications including ore grading in mining operations and typically lead to sub-optimal results. In this work, we present the implementation of a class of clustered regression calibration algorithms, that previously search the sample space looking for similar samples before employing a linear calibration model that is trained for that cluster. For a case study involving lithium quantification in three distinct exploration drills, the obtained results demonstrate that building local models can improve the performance of standard linear models in particular in the lower concentration region. Furthermore, we show that the models generalize well for unseen data of exploration drills on distinct rock veins, which can motivate not only further research on this class of methods but also technological applications for similar mining environments.

  • 15
  • 233