Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2022

Long-Period Fiber Gratings Coated with Poly(ethylene glycol) as Relative Humidity Sensors

Authors
Dias, B; de Almeida, JMMM; Coelho, LCC;

Publication
U.Porto Journal of Engineering

Abstract
Relative humidity is an important parameter in controlled environments and is typically monitored using low-cost electrochemical sensors with low resolution and accuracy. This kind of sensors cannot not be implemented in harsh or explosive environments (as in pyrotechnic facilities) due to electrical discharges, or in marine structures where the oxidation of the sensing probe materials changes the sensing response). In these cases, fiber optic sensors can provide solutions due to their intrinsic properties, such as immunity to electromagnetic interference and resistance in harsh environments. This work presents preliminary results regarding the steps of the fabrication of Long-Period Fiber Gratings, the coating processes with a thin layer of poly(ethylene glycol) (PEG) and its sensing performance to relative humidity, displaying a from 60 to 100%sensitivity of 0.6 nm/%RH in the range of 80 to 100%RH. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

2022

Simple Optical Fiber Interferometer for Dynamic Measurement of Refractive Index and Thickness of Polymer Films

Authors
Dias, B; Mendes, JPS; de Almeida, JMMM; Coelho, LCC;

Publication
IEEE SENSORS JOURNAL

Abstract
Fiber optic-based refractometers is a thoroughly researched field, with many different configurations being used. However, most designs require external calibration using substances of known refractive index (RI) and their fabrication process might be impractical and time consuming, creating the need for a quick and accurate method of measuring RI of different substances. A simple method for simultaneous measurement in real-time of RI and thickness of polymer thin films is presented, allowing dynamic measurements in the presence of changing environmental parameters, such as temperature or humidity. This method, which does not require previous calibration, is based on an inline Fabry-Perot (FP) cavity, created by dipping the tip of a cleaved optical fiber (OF) in a polymer solution. The procedure consists of using the equations of the low finesse FP interferometers to directly extract information from the structure created, such as RI and cavity length, by working in the spectral window from 1500 to 1600nm. The method was validated by creating FP cavities with liquids of known RI, for which a typical precision of 3 x 10(-3) was achieved, along with errors lower than 0.6% and 1% for RI and cavity length determination, respectively, The procedure was then used to monitor three different curing processes, namely the temperature curing of Sylgard (TM) 184, the UV curing of Norland Optical Adhesives (TM) 65 and the mixing and curing of Ceys (TM) Araldite epoxy glue. Both RI and cavity length were compared to reference values, showing excellent agreement with the experimental results for a method that does not require external calibration.

2022

Figure of Merit Comparison Between Surface Plasmon Resonance and Bloch Surface Waves

Authors
Dias, B; de Almeida, JMM; Coelho, LCC;

Publication
EPJ Web of Conferences

Abstract
The sensing performance of two types of electromagnetic surface waves are compared, a Surface Plasmon Polariton, where a gold thin film is used, being a standard material in biosensing applications; and a Bloch Surface Wave, using a photonic crystal made of a stack of silica and titanium dioxide layers. It is verified that the sensing performance (as measured by the Figure of Merit) of the gold film is higher, even though the Bloch Surface Waves can serve specific applications due to its narrow bandwidth. At the same time, it is concluded that further research must be made in order to choose the right set of parameters that maximize the Bloch Surface Wave performance.

2022

Optical fiber sensors for monitoring cement paste carbonation

Authors
Da Silva, PM; Mendes, JP; Coelho, LCC; De Almeida, JMMM;

Publication
Journal of Physics: Conference Series

Abstract
The use of concrete has been widespread in our society in housing and infrastructure, despite the environmental cost associated with its production. Its decay poses a social, economic, and environmental problem. Currently, the carbonation of cement paste is monitored through the measurement of its pH, with several optical fiber sensors (OFS) have been produced for this purpose. In the current work the focus is, also, on the carbonation monitoring of cement paste through an OFS, but not through pH measurements. Single fiber reflectance spectroscopy, previously employed to measure cement paste durability, is used to monitor the discoloration of cement paste caused by carbonation. As the carbonation front reaches the fiber tip embedded in the cement paste, the signal reflected onto the fiber increases. The accelerated carbonation of two limestone cement paste samples in an atmosphere of 100% CO2 was successfully monitored. The applicability of the sensor for operational use with ambient CO2 was confirmed through the measurement of carbonation at 3% CO2. The cross interference from water ingress and egress was also evaluated, and it didn't hinder the measurements of carbonation. Therefore, a novel OFS capable of measuring cement paste carbonation and durability, was achieved. © Published under licence by IOP Publishing Ltd.

2022

Photonic Crystal Design for Bloch Surface Wave Sensing

Authors
Dias, B; De Almeida, JMMM; Coelho, LCC;

Publication
Journal of Physics: Conference Series

Abstract
Bloch Surface Waves (BSW) consist of electromagnetic modes generated at the interface between a photonic crystal and an isotropic dielectric. This type of surface mode displays sharp resonances and high sensitivity to external refractive index variations, and thus appears to be an ideal candidate for usage in optical sensors. Nevertheless, design and optimization of photonic crystals is not a trivial task and constitutes an ongoing field of research. The sensitivity of BSW in both refractometric and adsorption sensing is calculated analytically using first-order perturbation theory for TE modes, allowing the understanding of how several physical parameters of the photonic crystal influence the sensitivity. Preliminary experimental results are presented, which aim to use the analytical calculations to allow for both refractometric and adsorption sensing in a single photonic crystal structure. © Published under licence by IOP Publishing Ltd.

2022

Strongly coupled plasmonic systems on optical fiber sensors: A study on nanomaterial properties

Authors
Dos Santos, PSS; Mendes, J; Dias, B; Pastoriza Santos, I; De Almeida, JMMM; Coelho, LCC;

Publication
Journal of Physics: Conference Series

Abstract
New paths to increase the sensing performance of plasmonic sensors have been reported in recent years. There are several methodologies to achieve such purpose, namely by optimizing the nanostructure, nanomaterial and even the sensing platform. Recently the use nanoparticles over plasmonic thin films have been reported and shown sensitivity enhancement, when compared to a bare thin film. Nevertheless, a nanomaterial combination between NP and thin film has not been studied. In this work it was studied such plasmonic materials in order to optimize not only refractometric sensitivity but also decrease the resultant plasmonic band width. It was found that for Au, Ag and Cu thin films, the deposition of plasmonic nanoparticles resulted in an overall refractometric sensitivity and figure of merit (FOM) increase. The larger FOM increase was obtained for the Ag thin film, from 42 to 162 when coupled to Si nanoparticles. The greater sensitivity increase was achieved for a Cu thin film coupled to a Si nanoparticle, with an increase from 1745 to 3230 nm/RIU. © Published under licence by IOP Publishing Ltd.

  • 21
  • 233