Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2021

Optical Vernier Effect: Recent Advances and Developments

Authors
Gomes, AD; Bartelt, H; Frazao, O;

Publication
LASER & PHOTONICS REVIEWS

Abstract
The optical analog of the Vernier effect applied to fiber interferometers is a recent tool to enhance the sensitivity and resolution of optical fiber sensors. This effect relies on the overlap between the signals of two interferometers with slightly detuned interference frequencies. The Vernier envelope modulation generated at the output spectrum presents magnified sensing capabilities (i.e., magnified wavelength shift) compared to that of the individual sensing interferometers that constitute the system, leading to a new generation of highly sensitive fiber sensing devices. This review analyses the recent advances and developments of the optical Vernier effect from a fiber sensing point-of-view. Initially, the fundamentals of the effect are introduced, followed by an extensive review on the state-of-the-art, presenting all the different configurations and types of fiber sensing interferometers used to introduce the optical Vernier effect. This paper also includes an overview of the complex case of enhanced Vernier effect and the introduction of harmonics to the effect.

2021

Optical Fiber Sensors for Structural Monitoring in Power Transformers

Authors
Monteiro, CS; Rodrigues, AV; Viveiros, D; Linhares, C; Mendes, H; Silva, SO; Marques, PVS; Tavares, SMO; Frazao, O;

Publication
SENSORS

Abstract
Power transformers are central elements of power transmission systems and their deterioration can lead to system failures, causing major disruptions in service. Catastrophic failures can occur, posing major environmental hazards due to fires, explosions, or oil spillage. Early fault detection can be accomplished or estimated using electrical sensors or a chemical analysis of oil or gas samples. Conventional methods are incapable of real-time measurements with a low electrical noise due to time-consuming analyses or susceptibility to electromagnetic interference. Optical fiber sensors, passive elements that are immune to electromagnetic noise, are capable of structural monitoring by being enclosed in power transformers. In this work, optical fiber sensors embedded in 3D printed structures are studied for vibration monitoring. The fiber sensor is encapsulated between two pressboard spacers, simulating the conditions inside the power transformer, and characterized for vibrations with frequencies between 10 and 800 Hz, with a constant acceleration of 10 m/s(2). Thermal aging and electrical tests are also accomplished, aiming to study the oil compatibility of the 3D printed structure. The results reported in this work suggest that structural monitoring in power transformers can be achieved using optical fiber sensors, prospecting real-time monitoring.

2021

Application of a Fiber Optic Refractometric Sensor to Measure the Concentration of Paracetamol in Crystallization Experiments

Authors
Soares, L; Cruz, P; Novais, S; Ferreira, A; Frazao, O; Silva, S;

Publication
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE

Abstract
A refractometric sensor was applied to measure in real-time the concentration of Active Pharmaceutical Ingredients (APIs) in crystallization experiments. Paracetamol was used as a model system due to the extensive literature available for this API. The refractometric sensor was fabricated by a simple and inexpensive method that consisted in splicing a short section of a multimode fiber to a single mode fiber. The compact geometry of this sensor, with an external diameter of just $125\ \mu\mathrm{m}$, allowed it to measure the concentration of paracetamol, both in a stirred tank crystallizer operating in batch and in an oscillatory flow crystallizer operating continuously. The proposed technique shows the potential to monitor the concentration of APIs in crystallizers of different sizes and geometries as an alternative to more expensive and complex analysis equipment.

2021

Environmental Sensitivity of Fabry-Perot Microcavities Induced by Layered Graphene-Dielectric Hybrid Coatings

Authors
Peixoto, R; Pires, JPS; Monteiro, CS; Raposo, M; Ribeiro, PA; Silva, SO; Frazao, O; Lopes, JMVP;

Publication
PHYSICAL REVIEW APPLIED

Abstract
We propose a fiber-based environmental sensor that exploits the reflection-phase-shift tunability provided by the use of layered coatings composed of dielectric slabs spaced by conducting membranes. A transfer-matrix study is done in a simplified theoretical model, for which an enhanced sensitivity of the reflection interference pattern to the output medium is demonstrated, in the typical refractive index range of liquid media. An experimental configuration using a cascaded Fabry-Perot microcavity coated by a graphene oxide/polyethylenimine (GO/PEI) multilayered structure is demonstrated. Its cost-effective chemical production method makes graphene oxide-based hybrid coatings excellent candidates for future real-life sensing devices.

2021

Characterization of an hollow core PCF for endoscopy applications: A proof concept

Authors
Marques J.; Novais S.; Silva S.; Frazao O.;

Publication
2021 Telecoms Conference, ConfTELE 2021

Abstract
Two distinct optical fibers for endoscope-based configurations are demonstrated and studied in this work. The fibers used for the experiment consist of: a conventional singlemode fiber (SMF 28e) and a hollow core photonic crystal fiber (HC-PCF) based on silica. Two studies that allowed the characterization of these fibers, according to their optical output power and when subjected to curvature, were carried out. The intensity power profile was also analysed in relation to the propagation distance, transversal displacement and incidence angle. After this study it can be concluded that the most suitable solution for the endoscope is the HC-PCF fiber working as a transmission probe. For the proof of concept of the fiber-based endoscope, a cleaved multimode fiber (MMF) tip was used as a reception probe and its reflection efficiency was also analysed.

2021

Fiber-Integrated Phase Change Metasurfaces with Switchable Group Delay Dispersion

Authors
Martins, T; Cui, YH; Gholipour, B; Ou, JY; Frazao, O; MacDonald, KF;

Publication
ADVANCED OPTICAL MATERIALS

Abstract
Demonstration of a fiber-integrated non-volatile reconfigurable metasurface providing high-contrast group delay dispersion switching functionality is reported, which may be engineered to operate at wavelengths across the near-infrared (telecoms) band. Light-induced amorphous-crystalline phase switching in a chalcogenide (germanium antimony telluride) metasurface, only a fraction of a wavelength thick, fabricated on the end-facet of a single-mode optical fiber, enables intensity and phase modulation of the guided wave at metasurface designated bands. Such devices present a range of opportunities in fiberized remotely programmable phase/intensity multiplexing and dynamic dispersion compensation for emerging telecommunications and data storage/processing applications, including in photonic neural network and neuromorphic computing architectures.

  • 22
  • 231