Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2021

Superfluid effects in defocusing Nematic liquid Crystals

Authors
Ferreira, TD; Silva, NA; Guerreiro, A;

Publication
NONLINEAR OPTICS AND APPLICATIONS XII

Abstract
The last years saw the emergence of nonlinear optical materials, with local and nonlocal nonlinearities, as experimentally accessible systems to implement optical analogues of quantum fluids. In these systems, a light beam propagating in the nonlinear medium can be interpreted as a fluid, where the diffraction in the transverse plane to the propagation gives the effective mass of the fluid and the medium nonlinearity mediates the required interactions between the photons. This fluid interpretation and its application have been extensively studied, from the creation of superfluid-like flows and the study of phenomena associated with this effect to the implementation of gravity analogues. Furthermore, many optical materials have been considered, with a special interest in the ones that offer tunable mechanisms that allow to easily control the system properties to better explore and emulate the different phenomena. Recently, nematic liquid crystals have been proposed as an interesting tunable material capable of supporting superfluids of light. These systems have a nonlocal character and offer external mechanisms that can be used to tailor the nonlinearity to better emulate the desired analogue system. Indeed, through the application of an external electric field perpendicular to the direction of propagation, is it possible to control the nonlocal length of the nonlinearity. This mechanism offers interesting opportunities in the present context. In this work, through numerical methods based on GPGPU supercomputing, we explore the possibility of observing superfluid effects in defocusing nematic liquid crystals. In particular, we explore the possibility of observing the drag force cancellation and the emission of quantized vortices, which are two manifestations of a superfluid flow. Furthermore, we also discuss the possibility of using these systems for creating an analogue of quantum turbulence with these materials. These studies constitute a stepping-stone towards the implementation of gravity analogues with nematic liquid crystals.

2021

Reservoir computing with optical solitons

Authors
Silva, NAA; Ferreira, TD; Silva, DJ; Guerreiro, A;

Publication
NONLINEAR OPTICS AND APPLICATIONS XII

Abstract
The need for faster and energy-efficient computing technologies has recently pushed for major developments on alternative computing paradigms to the common von Neumann architecture. Amongst those, reservoir computing framework is an emerging concept that leverages a simple training process and eases transference to hardware implementations, allowing any given nonlinear physical system to act as a computing platform. In this work, we explore how we can make use of a discrete chain of solitons to create an effective reservoir computing framework, investigating not only the ability to learn data but also to predict models depending on the strength of the nonlinear interaction of the media. Probing the role of the nonlinear separation for tasks involving nonlinear separable data, these results open new possibilities for a multitude of physical implementations in the context of optical sciences, from optical fibers to nonlinear crystals.

2021

(INVITED) Exploring quantum-like turbulence with a two-component paraxial fluid of light

Authors
Silva N.A.; Ferreira T.D.; Guerreiro A.;

Publication
Results in Optics

Abstract
Fluids of light is an emergent topic in optical sciences that exploits the fluid-like properties of light to establish controllable and experimentally accessible physical analogues of quantum fluids. In this work we explore this concept to generate and probe quantum turbulence phenomena by using the fluid behavior of light propagating in a defocusing nonlinear media. The proposal presented makes use of orthogonal polarizations and incoherent beam interaction to establish a theoretical framework of an analogue two-component quantum fluid, a physical system that features a modified Bogoliubov-like dispersion relation for the perturbative excitations featuring regions of instability. We demonstrate that these unstable regions can be tuned by manipulating the relative angle of incidence between the two components, allowing to define an effective range of energy injection capable of exciting turbulent phenomena. Our numerical investigations confirm the theory and show evidence of direct and inverse turbulent cascades expected from weak wave turbulence theories. The works end on a discussion concerning its possible experimental realization, allowing the access to quantum turbulence in regimes beyond those previously explored by making use of the controllable aspects of tabletop fluids of light experiments.

2021

Advances in Plasmonic Sensing at the NIR-A Review

Authors
Dos Santos, PSS; De Almeida, JMMM; Pastoriza Santos, I; Coelho, LCC;

Publication
SENSORS

Abstract
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field.

2021

Optical fiber sensors based on sol-gel materials: design, fabrication and application in concrete structures

Authors
Figueira, RB; de Almeida, JM; Ferreira, B; Coelho, L; Silva, CJR;

Publication
MATERIALS ADVANCES

Abstract
Optical fiber sensing systems have been widely developed for several fields such as biomedical diagnosis, food technology, military and industrial applications and civil engineering. Nowadays, the growth and advances of optical fiber sensors (OFS) are focused on the development of novel sensing concepts and transducers as well as sensor cost reduction. This review provides an overview of the state-of-the-art of OFS based on sol-gel materials for diverse applications with particular emphasis on OFS for structural health monitoring of concrete structures. The types of precursors used in the development of sol-gel materials for OFS functionalization to monitor a wide range of analytes are debated. The main advantages of OFS compared to other sensing systems such as electrochemical sensors are also considered. An interdisciplinary review to a broad audience of engineers and materials scientists is provided and the relationship between the chemistry of sol-gel material synthesis and the development of OFS is considered. To the best of the authors' knowledge, no review manuscripts were found in which the fields of sol-gel chemistry and OFS are correlated. The authors consider that this review will serve as a reference as well as provide insights for experts into the application of sol-gel chemistry and OFS in the civil engineering field.

2021

Single Fiber Reflectance Spectroscopy for the Monitoring of Cement Paste

Authors
da Silva, PM; Coelho, LCC; Almeida, JMMMD;

Publication
CHEMOSENSORS

Abstract
Reinforced concrete structures are an essential part of our modern society, and monitoring their structural health is of paramount importance. Early detection of decay allows for the reduction of repair costs and, more importantly, the prevention of catastrophic failure. For this purpose, a single fiber reflectance spectrometer was embedded in cement paste samples for the monitoring of water at the fiber tip through its sensitivity to changes in the refractive index. It monitored the curing of samples with different water-to-cement ratios (w/c), between 0.45 and 0.60, measuring the water exhaust during the hardening of the cement paste. It also measured the capillary coefficient from cement paste samples of 0.50, 0.55 and 0.60 w/c: 0.668 & PLUSMN; 0.002 mm/& RADIC;h, 1.771 & PLUSMN; 0.052 mm/& RADIC;h and 6.360 & PLUSMN; 0.269 mm/& RADIC;h, respectively. The capillary coefficient values agree with gravimetric measurements of sorptivity and are further confirmed through porosity measurements made with a scanning electron microscope. Thus, single fiber reflectance spectroscopy can be a gateway to inexpensively measure the entire life cycle of cement, from its curing until its eventual decay, assessing, in situ, its durability through the capillary coefficient.

  • 33
  • 230