2020
Authors
Zibaii, MI; Layeghi, A; Dargahi, L; Haghparast, A; Frazao, O;
Publication
Journal of Science and Technological Researches
Abstract
2020
Authors
Monteiro, CS; Silva, SO; Santos, JL; Frazao, O;
Publication
Optics InfoBase Conference Papers
Abstract
A fiber sensor composed by a graphene oxide membrane at the tip of a capillary is presented. The graphene oxide membrane acts as a low-reflectivity mirror, distanced from a single mode fiber forming a low finesse Fabry-Perot interferometer. The response of the sensor to acoustic pressure with varying frequency is studied in the range between 5 and 45 kHz, attaining a minimum signal to noise ratio of 14 dB. © 2021 The Author(s).
2020
Authors
Gomes, AD; Ferreira, MS; Bierlich, J; Kobelke, J; Rothhardt, M; Bartelt, H; Frazão, O;
Publication
Optics InfoBase Conference Papers
Abstract
We discuss the novel concept of harmonics of the Vernier effect for optical fiber sensors as a tool to break the limits of conventional optical Vernier effect currently used. The new effect provides enhancements scalable with the harmonic order. © 2021 The Author(s).
2020
Authors
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;
Publication
JOURNAL OF PHYSICS-PHOTONICS
Abstract
Based on the characteristics of ferrofluids, a monolithic optofluidic device for magnetic field sensing is proposed and demonstrated. The device consists of a Fabry-Perot interferometer, composed by an optical waveguide orthogonal to a microfluidic channel, which was fabricated inside a fused silica substrate through femtosecond laser micromachining. The interferometer was first optimized by studying the influence of the waveguide writing parameters on its spectral properties. Waveguides written at higher pulse energies led to a decrease of the signal-to-noise ratio, due to an enhancement of micrometer sized defects associated with Mie scattering. Fringe visibility was also maximized for waveguides written at lower scanning speeds. Making use of the tunable refractive index property exhibited by magnetic fluids, the interferometer was then tested as a magnetic field sensor by injecting a ferrofluid inside the microfluidic channel. A linear sensitivity of -0.25 nm/mT was obtained in the 9.0-30.5 mT range with the external field parallel to the waveguide axis.
2020
Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;
Publication
JOURNAL OF OPTICS
Abstract
Near-surface optical waveguides were fabricated in alkaline earth boro-aluminosilicate glass (Eagle2000), by femtosecond laser direct writing, using two distinct approaches. First, the capability of directly inscribing optical waveguides close to the surface was tested, and then, compared to the adoption of post writing wet etching to bring to the surface waveguides inscribed at greater depths. Laser ablation was found to limit the minimum surface to core center distance to 6.5 mu m in the first method, with anisotropic wet etching limiting the latter to 3 mu m without any surface deformation; smaller separations can be achieved at the cost of the planar surface topography. Furthermore, the waveguide's cross-section was seen to vary for laser inscription nearing the surface, observations that were also corroborated by its distinct guiding characteristics when compared to the adoption of post writing wet etching. The spectral analysis (in the 500-1700 nm range) also evidenced an increase in insertion loss for longer wavelengths and smaller surface to core center separations, caused, most likely, by coupling loss due to the interaction between the propagating mode and the surface. Different lengths of waveguide exposed to the surface were also tested, revealing that scattering loss due to surface roughness is not an issue at the centimeter scale.
2020
Authors
Silva, NA; Almeida, AL; Ferreira, TD; Guerreiro, A;
Publication
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
Abstract
This work models the propagation of an optical pulse in a four-level atomic system in the electromagnetically induced transparency regime. By demonstrating that linear and nonlinear optical properties can be externally controlled and tailored by a continuous-wave control laser beam and an assisting incoherent pump field, it is shown how these media can provide an excellent framework to experimentally explore pulse dynamics in the presence of non-conservative terms, either gain or loss. Furthermore, we explore the existence of stable dissipative soliton solutions, testing the analytical results with computational simulations of both the effective (1+1)-dimensional model and the full Maxwell-Bloch system of equations.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.