Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2018

Real-Time Early Warning Strategies for Corrosion Mitigation in Harsh Environments

Authors
Costa Coelho, LCC; Soares dos Santos, PSS; da Silva Jorge, PAD; Santos, JL; Marques Martins de Almeida, JMMM;

Publication
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Long period fiber gratings (LPFGs) were coated with iron (Fe) and exposed to oxidation in air and in water having different concentrations of sodium chloride (NaCl) to detect the formation of iron oxides and hydroxides. The process was monitored in real time by measuring the characteristics of the LPFGs attenuation bands. Thin films of Fe were deposited on top of silica (SiO2) substrates, annealed in air, and exposed to water with NaCl. The composition of the oxide and hydroxide layers was analyzed by SEM/EDS and X-ray diffraction. It observed the formation of oxide phases, Fe3O4 (magnetite), and Fe2O3 (hematite) when annealing in air, and Fe-2(OH)(3) Cl (hibbingite) and FeO(OH) (lepidocrocite) when exposed to water with NaCl. Results shows that Fe-coated LPFGs can be used as sensors for real-time monitoring of corrosion in offshore and in coastal projects where metal structures made of iron alloys are in contact with sea or brackish water. In addition, LPFGs coated with hematite were characterized for sensing, leading to the conclusion that the sensitivity to the refractive index of the surrounding medium can be tuned by proper choice of hematite thickness.

2018

Measurement thermal conductivity of water using a all-fiber sensor based on a metallic coated hybrid LPG-FBG structure

Authors
Silva, GE; Caldas, P; Santos, JL; Santos, JC;

Publication
Optics InfoBase Conference Papers

Abstract
This paper presents preliminary results of common water thermal conductivity measurements using an all-fiber sensor based in conventional hot-wire method concept. The thermal conductivity of common water at room temperature obtained is 0.699 W/mK. Although the result is relatively distinct, about 14%, from the reference value found in literature, it is promising and indicates the feasibility of using the experimental arrangement for measuring thermal properties of materials with higher accuracy, provided that improvements already foreseen in future work be incorporated. © OSA 2018 © 2018 The Author(s)

2018

Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation

Authors
Paiva, JS; Jorge, PAS; Rosa, CC; Cunha, JPS;

Publication
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS

Abstract
Background: The tip of an optical fiber has been considered an attractive platform in Biology. The simple cleaved end of an optical fiber can be machined, patterned and/or functionalized, acquiring unique properties enabling the exploitation of novel optical phenomena. Prompted by the constant need to measure and manipulate nanoparticles, the invention of the Scanning Near-field Optical Microscopy (SNOM) triggered the optimization and development of novel fiber tip microfabrication methods. In fact, the fiber tip was soon considered a key element in SNOM by confining light to sufficiently small extensions, challenging the diffraction limit. As result and in consequence of the newly proposed "Lab On Tip" concept, several geometries of fiber tips were applied in three main fields: imaging (in Microscopy/Spectroscopy), biosensors and micromanipulation (Optical Fiber Tweezers, OFTs). These are able to exert forces on microparticles, trap and manipulate them for relevant applications, as biomolecules mechanical study or protein aggregates unfolding. Scope of review: This review presents an overview of the main achievements, most impactful studies and limitations of fiber tip-based configurations within the above three fields, along the past 10 years. Major conclusions: OFTs could be in future a valuable tool for studying several cellular phenomena such as neurodegeneration caused by abnormal protein fibrils or manipulating organelles within cells. This could contribute to understand the mechanisms of some diseases or biophenomena, as the axonal growth in neurons.

2018

The last frontier: Coupling technological developments with scientific challenges to improve hazard assessment of deep-sea mining

Authors
Santos, MM; Jorge, PAS; Coimbra, J; Vale, C; Caetano, M; Bastos, L; Iglesias, I; Guimaraes, L; Reis Henriques, MA; Teles, LO; Vieira, MN; Raimundo, J; Pinheiro, M; Nogueira, V; Pereira, R; Neuparth, T; Ribeiro, MC; Silva, E; Castro, LFC;

Publication
SCIENCE OF THE TOTAL ENVIRONMENT

Abstract
The growing economic interest in the exploitation of mineral resources on deep-ocean beds, including those in the vicinity of sensitive-rich habitats such as hydrothermal vents, raise amounting concern about the damage that such actions might originate to these poorly-know ecosystems, which represent millions of years of evolution and adaptations to extreme environmental conditions. It has been suggested that mining may cause a major impact on vent ecosystems and other deep-sea areas. Yet, the scale and the nature of such impacts are unknown at present. Hence, building upon currently available scientific information it is crucial to develop new cost-effective technologies embedded into rigorous operating frameworks. The forward-thinking provided here will assist in the development of new technologies and tools to address the major challenges associated with deep sea-mining; technologies for in situ and ex situ observation and data acquisition, biogeochemical processes, hazard assessment of deep-sea mining to marine organisms and development of modeling tools in support of risk assessment scenarios. These technological developments are vital to validate a responsible and sustainable exploitation of the deep-sea mineral resources, based on the precautionary principle.

2018

Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach

Authors
Paiva, JS; Ribeiro, RSR; Cunha, JPS; Rosa, CC; Jorge, PAS;

Publication
SENSORS

Abstract
Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

2018

Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes

Authors
Gomes, S; Castro, C; Barrias, S; Pereira, L; Jorge, P; Fernandes, JR; Martins Lopes, P;

Publication
SCIENTIFIC REPORTS

Abstract
The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  • 54
  • 230