Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2024

Manipulation of Microparticles in Optofluidic Devices Fabricated by Femtosecond Laser Micromachining

Authors
Cameira, C; Maia, JM; Marques, P;

Publication
EPJ Web of Conferences

Abstract
This study reports the fabrication of three-dimensional microfluidic channels in fused silica, using femtosecond laser micromachining, to achieve two-dimensional hydrodynamic flow focusing in either the horizontal or the vertical directions. Spatial focusing of 3 µm polystyrene particles was successfully demonstrated, showing the ability of the fabricated devices to confine microparticles within a 6 µm layer over a channel width of 420 µm and within a 5 µm layer over a channel height of 260 µm. Integration of laser-direct written optical waveguides inside a microfluidic chip and orthogonal to the channel also enabled the implementation of a dual-beam optical trap, with trapping of polystyrene microparticles using a 1550 nm beam being demonstrated.

2024

Development of a New Opto-Electrochemical Cell for Sensing Applications

Authors
Mendes, P; Coelho, CC; Ribeiro, A;

Publication
2024 IEEE Sensors Applications Symposium, SAS 2024 - Proceedings

Abstract
New systems with innovative design to perform measurements combining electrochemistry and surface plasmon resonance (ESPR) are currently a need to overcome the limitations of existent market solutions and expand the research possibilities of this technology. The main goal of this work was to develop a new cell to increase ESPR practical applications in several fields. To do so, a homemade SPR cell, fabricated by 3D-printing technology, was adapted for this purpose by incorporating the conventional 3-electrodes to perform the electrochemical experiments. The developed cell was fully compatible with commercial SPR substrates. After optimization of the homemade ESPR setup to perform the combined electrochemical and SPR measurements, two main applications were explored in this work. The first was the use of ESPR technology as straightforward tool to simultaneously investigate the electrical and optical properties of conducing/non-conducting polymers electrosynthetized on the SPR platforms. The conducting polymer poly(thionine) was used in this work for proof-of-concept. The second application envisaged the use of ESPR approach for simple electrodeposition ofmaterials with enhanced plasmonic properties for sensitivity enhancement of SPR biosensors. For validation of the concept, graphene oxide (GO) was electrochemically reduced on gold substrates aiming to evaluate the plasmonic properties of graphene-modified sensing surfaces. © 2024 IEEE.

2024

Analysing Heavy Metal Contaminants in Wood Wastes using Laser-Induced Breakdown Spectroscopy (LIBS)

Authors
Capela, D; Lopesa, T; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
Circular economy policies and recycling play a pivotal role in fostering sustainable models for the wood industry capable of reducing the environmental impact of our consumption patterns. The production of Particleboard is a good example of industry that uses high quantities of recycled wood. However, it poses risks since wood often have contaminants that compromise compliance of safety standards. Thus, it is necessary to develop methodologies for rapid analysis of chemical contaminants in wood wastes that allow easy detection of these elements. In this work, the capability of Laser-induced breakdown spectroscopy (LIBS) to detect a set of heavy metals in wood samples was explored. Some advantages of this technique, such as portability, minimal to no sample preparation, and quick analysis are characteristics that make this method one of the most suitable for this purpose of analysis. In the majority of cases, the contamination comes from the pigments used in paints, varnishes, or coatings. Titanium (Ti) e.g. is a common element in white pigments and Chromium (Cr) in red and green pigments. To ensure the presence or absence of Cr and Ti, a set of 3 lines was analysed. The results revealed the presence of these elements and that 30% of the samples seem to be highly contaminated. The LIBS technique proved to be a powerful methodogy for decision-making purposes.

2024

LIBS imaging as a process control tool in the cork industry

Authors
Ferreira, MFS; Oliveira, R; Capela, D; Lopes, T; Marrafa, J; Meneses, P; Oliveira, A; Baptista, C; Gomes, T; Moutinho, S; Coelho, J; da Silva, RN; Guimaraes, D; Silva, NA; Jorge, PAD;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
The application of surface treatments to cork stoppers is presently a common practice in the wine industry, designed to achieve maximum performance and optimal costumer experience of premium products. Unfortunately, current coating techniques lack efficient process control tools, often resulting in faulty products being detected too late, already in use, compromising performance, product quality and mining consumer confidence. In this work a fully automated system equipped with machine vision and automatic feeding of corks, was coupled with an imaging LIBS setup and used to perform a benchmarking against conventional quality control methods. Results clearly demonstrate the capability of the new LIBS system to effectively evaluate in real time the quality of silicone-based surface coatings in cork stoppers, effectively working as a tool for process control providing a route for effective optimization.

2024

Screening Chromium Contamination in Wood Samples using Laser-Induced Breakdown Spectroscopy Imaging

Authors
Guimarães, D; Capela, D; Lones, T; Magalhães, P; Pessanha, S; Jorge, AS; Silva, A;

Publication
2024 IEEE Sensors Applications Symposium, SAS 2024 - Proceedings

Abstract
Recycling of post-consumer wood waste into wood-based panels may be hindered by the presence of physical and chemical impurities in the waste stream. Therefore greater attention should be given to assessing the quality of wood waste and in particular to heavy metals contamination. One of the elements that poses concern is Chromium (Cr), Cr compounds can be toxic, particularly hexavalent chromium (Cr(VI)), which is a known human carcinogen. Hence, screening for Cr in wood waste plays a pivotal role in enhancing recycling facility operations and mitigating contamination before final product incorporation. In this study, a Laser-Induced Breakdown Spectroscopy (LIBS) methodology was optimized for screening wood waste for Cr and validated by X-ray Fluorescence (XRF) measurements. LIBS spectral complexity and sample matrix effects challenges were addressed through careful selection of Cr lines and tailored data analysis algorithms. The results showed that LIBS imaging successfully provided a straightforward timely output revealing the contaminated wood samples, crucial for quick decision-making in production lines. © 2024 IEEE.

2024

Multimodal Knowledge Distillation in Spectral Imaging

Authors
Lopes, T; Capela, D; Ferreira, MFS; Teixeira, J; Silva, C; Guimaraes, DF; Jorge, PAS; Silva, NA;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
Spectral imaging is a powerful technology that uses spatially referenced spectral signatures to create informative visual maps of sample surfaces that can reveal more than what conventional RGB-visual images can show. Indeed, different spectroscopy modalities can provide different information about the same sample: for instance, Laser-Induced Breakdown Spectroscopy (LIBS) imaging can detect the presence of specific elements on the surface, while Raman imaging can identify the molecular structures and compositions of the sample, both of which have potential applications in various industrial processes, from quality control to material sorting. In the path from science to technology, the increasing accessibility to such solutions and the strong market pull have opened a window of opportunity for innovative multimodal imaging solutions, where information from distinct sources is set to be combined in order to enhance the capabilities of the single modality system. However, the practical implementation of multimodal spectral imaging is still a challenge, despite its theoretical potential, and as such, it is yet to be achieved. In this work, we will go over multimodal spectral knowledge distillation, a disruptive approach to multimodal spectral imaging techniques that tries to explore the combination of two techniques to capitalize on their individual strengths. In specific, this approach allows us to utilize one technique as an autonomous supervisor for the other, leveraging the higher degree of knowledge and interpretability of one of the techniques to increase the performance and transparency of the other. We present some example scenarios with LIBS and HSI and Raman spectroscopy and LIBS, discussing the impact of this new approach for scientific and technological applications.

  • 6
  • 233