Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2016

Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials

Authors
Hierro Rodriguez, A; Leite, IT; Rocha Rodrigues, P; Fernandes, P; Araujo, JP; Jorge, PAS; Santos, JL; Teixeira, JM; Guerreiro, A;

Publication
NANOTECHNOLOGY

Abstract
A palladium (Pd)-based optical metamaterial has been designed, fabricated and characterized for its application in hydrogen sensing. The metamaterial can replace Pd thin films in optical transmission schemes for sensing with performances far superior to those of conventional sensors. This artificial material consists of a palladium-alumina metamaterial fabricated using inexpensive and industrial-friendly bottom-up techniques. During the exposure to hydrogen, the system exhibits anomalous optical absorption when compared to the well-known response of Pd thin films, this phenomenon being the key factor for the sensor sensitivity. The exposure to hydrogen produces a large variation in the light transmission through the metamembrane (more than 30% with 4% in volume hydrogen-nitrogen gas mixture at room temperature and atmospheric pressure), thus avoiding the need for sophisticated optical detection systems. An optical homogenization model is proposed to explain the metamaterial response. These results contribute to the development of reliable and low-cost hydrogen sensors with potential applications in the hydrogen economy and industrial processes to name a few, and also open the door to optically study the hydrogen diffusion processes in Pd nanostructures.

2016

Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils

Authors
Coelho, L; Viegas, D; Santos, JL; de Almeida, JMMM;

Publication
TALANTA

Abstract
A hybrid optical sensing scheme based on a fiber Bragg grating (FBG) combined with a titanium dioxide coated long period fiber grating (LPFG) for monitoring organic solvents in high refractive index edible oils is reported. In order to investigate and optimize the sensor performance, two different FBG/LPFG interrogation systems were investigated. The readout of the sensor was implemented using either the wavelength shift of the LPFG resonance dip or the variation in the optical power level of the reflected/transmitted light at the FBG wavelength peak, which in turn depends on the wavelength position of the LPFG resonance. Hexane concentrations up to 20%V/V, corresponding to the refractive index range from 1.451 to 1.467, were considered. For the transmission mode of operation, sensitivities of 1.41 nm/%V/V and 0.11 dB/%V/V, with resolutions of 0.58%V/V and 0.29%V/V, were achieved when using the LPFG wavelength shift and the FBG transmitted optical power, respectively. For the FBG reflection mode of operation, a sensitivity of 0.07 dB/V/V and a resolution better than 0.16%V/V were estimated.

2016

Analysis of a Plasmonic Based Optical Fiber Optrode With Phase Interrogation

Authors
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Viegas, D;

Publication
PHOTONIC SENSORS

Abstract
Optical fiber optrodes are attractive sensing devices due to their ability to perform point measurement in remote locations. Mostly, they are oriented to biochemical sensing, quite often supported by fluorescent and spectroscopic techniques, but with the refractometric approach considered as well when the objective is of high measurement performance, particularly when the focus is on enhancing the measurand resolution. In this work, we address this subject, proposing and analyzing the characteristics of a fiber optic optrode relying on plasmonic interaction. A linearly tapered optical fiber tip is covered by a double overlay: the inner one - a silver thin film and over it a dielectric layer, with this combination allowing to achieve, at a specific wavelength range, surface plasmonic resonance (SPR) interaction sensitive to the refractive index of the surrounding medium. Typically, the interrogation of the SPR sensing structures is performed, considering spectroscopic techniques, but in principle, a far better performance can be obtained, considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This is the approach which is studied here in the context of the proposed optical fiber optrode configuration. The analysis performed shows the combination of a silver inner layer with a dielectric titanium oxide layer with tuned thicknesses enables sensitive phase reading and allows the operation of the fiber optic optrode sensor in the third telecommunication wavelength window.

2016

Zinc oxide coated optical fiber long period gratings for sensing of volatile organic compounds

Authors
Coelho, L; Viegas, D; Santos, JL; de Almeida, JMMM;

Publication
OPTICAL SENSING AND DETECTION IV

Abstract
The detection of volatile organic compounds is accomplished with a sensing device based on a long period fiber grating (LPFG) coated with a zinc oxide (ZnO) thin layer with self-temperature compensation. The ZnO coating structure was produced onto the cladding of the fiber by thermal oxidation of a metallic Zn thin film. The morphological characterization of ZnO thin films, grown at the same time on silicon substrates, was performed using X-ray diffraction, X-ray Photoelectron Spectroscopy and Scanning Electron Microscope which shows very good agreement. LPFGs with 290 nm thick ZnO coating were fabricated and characterized for the detection of ethanol and hexane in vapor phase. For ethanol a sensitivity of 0.99 nm / g.m(-3) was achieved when using the wavelength shift interrogation mode, while for hexane a much lower sensitivity of 0.003 nm / g.m(-3) was measured, indicating a semi-selectivity of the sensor with a spectral resolution better than 3.2 g.m(-3).

2016

Design and Evaluation of Novel Textile Wearable Systems for the Surveillance of Vital Signals

Authors
Trindade, IG; da Silva, JM; Miguel, R; Pereira, M; Lucas, J; Oliveira, L; Valentim, B; Barreto, J; Silva, MS;

Publication
SENSORS

Abstract
This article addresses the design, development, and evaluation of T-shirt prototypes that embed novel textile sensors for the capture of cardio and respiratory signals. The sensors are connected through textile interconnects to either an embedded custom-designed data acquisition and transmission unit or to snap fastener terminals for connection to external monitoring devices. The performance of the T-shirt prototype is evaluated in terms of signal-to-noise ratio amplitude and signal interference caused by baseline wander and motion artefacts, through laboratory tests with subjects in standing and walking conditions. Performance tests were also conducted in a hospital environment using a T-shirt prototype connected to a commercial three-channel Holter monitoring device. The textile sensors and interconnects were realized with the assistance of an industrial six-needle digital embroidery tool and their resistance to wear addressed with normalized tests of laundering and abrasion. The performance of these wearable systems is discussed, and pathways and methods for their optimization are highlighted.

2016

MarinEye - A tool for marine monitoring

Authors
Martins, A; Dias, A; Silva, E; Ferreira, H; Dias, I; Almeida, JM; Torgo, L; Goncalves, M; Guedes, M; Dias, N; Jorge, P; Mucha, AP; Magalhaes, C; Carvalho, MDF; Ribeiro, H; Almeida, CMR; Azevedo, I; Ramos, S; Borges, T; Leandro, SM; Maranhao, P; Mouga, T; Gamboa, R; Lemos, M; dos Santos, A; Silva, A; Teixeira, BFE; Bartilotti, C; Marques, R; Cotrim, S;

Publication
OCEANS 2016 - SHANGHAI

Abstract
This work presents an autonomous system for marine integrated physical-chemical and biological monitoring - the MarinEye system. It comprises a set of sensors providing diverse and relevant information for oceanic environment characterization and marine biology studies. It is constituted by a physical-chemical water properties sensor suite, a water filtration and sampling system for DNA collection, a plankton imaging system and biomass assessment acoustic system. The MarinEye system has onboard computational and logging capabilities allowing it either for autonomous operation or for integration in other marine observing systems (such as Observatories or robotic vehicles. It was designed in order to collect integrated multi-trophic monitoring data. The validation in operational environment on 3 marine observatories: RAIA, BerlengasWatch and Cascais on the coast of Portugal is also discussed.

  • 68
  • 233