Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2024

D-Shaped Photonic Crystal Fiber SPR Sensor for Humidity Monitoring in Oils

Authors
Romeiro, F; Rodrigues, JB; Miranda, C; Cardoso, P; Silva, O; Costa, CWA; Giraldi, MR; Santos, L; Guerreiro, A;

Publication
EPJ Web of Conferences

Abstract
This theoretical study presents a D-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) based sensor designed for humidity detection in transformer oil. Humidity refers to the presence of water dissolved or suspended in the oil, which can affect its dielectric properties and, consequently, the efficiency and safety of the transformer's operation, failures in the sealing system and the phenomenon of condensation can be the main sources of this humidity. This sensor leverages the unique properties of the coupling between surface plasmons and fiber guided mode at the Au-PCF interface to enhance the sensitivity to humidity changes in the external environment. The research demonstrated the sensor's efficacy in monitoring humidity levels ranging from 0% to 100% with an average sensitivity of measured at 1106.1 nm/RIU. This high sensitivity indicates a substantial shift in the resonance wavelength corresponding to minor changes in the refractive index caused by varying humidity levels, which is critically important in the context of transformer maintenance and safety. Transformer oil serves as both an insulator and a coolant, and its humidity level is a key parameter influencing the performance and longevity of transformers. Excessive humidity can lead to insulation failure and reduced efficiency and, therefore, the ability to accurately detect and monitor humidity levels in transformer oil can significantly enhance preventive maintenance strategies, reduce downtime, and prevent potential failures, ensuring the reliable operation of electrical power systems. © The Authors.

2024

Impact of gaseous interferents on palladium expansion for hydrogen optical sensing: A time stability study

Authors
Almeida, MAS; Almeida, JMMMD; Coelho, LCC;

Publication
OPTICS AND LASER TECHNOLOGY

Abstract
Continuous monitoring of hydrogen (H2) concentration is critical for safer use, which can be done using optical sensors. Palladium (Pd) is the most commonly used transducer material for this monitoring. This material absorbs H2 leading to an isotropic expansion. This process is reversible but is affected by the interaction with interferents, and the lifetime of Pd thin films is a recurring issue. Fiber Bragg Grating (FBG) sensors are used to follow the strain induced by H2 on Pd thin films. In this work, it is studied the stability of Pd-coated FBGs, protected with a thin Polytetrafluoroethylene (PTFE) layer, 10 years after their deposition to assess their viability to be used as H2 sensors for long periods of time. It was found that Pd coatings that were PTFE-protected after deposition had a longer lifetime than unprotected films, with the same sensitivities that they had immediately after their deposition, namely 23 and 10 pm/vol% for the sensors with 150 and 100 nm of Pd, respectively, and a saturation point around 2 kPa. Furthermore, the Pd expansion was analyzed in the presence of H2, nitrogen (N2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O), finding that H2O is the main interferent. Finally, an exhaustive test for 90 h is also done to analyze the long-term stability of Pd films in dry and humid environments, with only the protected sensor maintaining the long-term response. As a result, this study emphasizes the importance of using protective polymeric layers in Pd films to achieve the five-year lifetime required for a real H2 monitoring application.

2024

Optical pH Sensor Based on a Long-Period Fiber Grating Coated with a Polymeric Layer-by-Layer Electrostatic Self-Assembled Nanofilm

Authors
Pereira, JM; Mendes, JP; Dias, B; de Almeida, JMMM; Coelho, LCC;

Publication
SENSORS

Abstract
An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 +/- 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 +/- 0.01 RI, expanding up to 310 nm with a 1.35 +/- 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.

2024

Observation of Surface Plasmon Polaritons and Bloch Surface Waves in a Metal-Dielectric Photonic Crystal

Authors
Dias, BS; de Almeida, JMMM; Coelho, LCC;

Publication
IEEE SENSORS JOURNAL

Abstract
The excitation of two different electromagnetic surface waves-surface plasmon polaritons (SPPs) and Bloch surface waves (BSWs)-is demonstrated in a 1-D metal-dielectric photonic crystal with numerical and experimental studies. The discussed structure consists of an Ag-TiO2 thin-film stack forming a metal-insulator-metal-insulator device. The thickness of the TiO2 layer placed between the metals is tested for two different values (50 and 300 nm), which also allows the excitation of guided-mode resonances. It is observed that BSWs in this metal-dielectric structure behave similar to the case of all-dielectric photonic crystals, whereas the SPP modes display similar properties to those excited in metal-insulator-metal cavities. The sensitivity of these surface states to variations in the refractive index (RI) of the external dielectric is characterized. For the case of the plasmonic modes, a maximum sensitivity of (7.2 +/- 0.3) x 10(3) nm/RIU was measured, while for the BSW the maximum sensitivity was (1.20 +/- 0.05) x 10(2) nm/RIU. Due to the large field enhancement and penetration on external media, these surface states display exceptional properties for application in optical sensors, and the presented results provide interesting possibilities in the design of novel sensing structures with a flexible selection of surface states for interrogation.

2024

From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing

Authors
dos Santos, PSS; Mendes, JP; Perez Juste, J; Pastoriza Santos, I; De Almeida, JMMM; Coelho, LCC;

Publication
PHOTONICS RESEARCH

Abstract
Nanoparticle-based plasmonic optical fiber sensors can exhibit high sensing performance, in terms of refractive index sensitivities (RISs). However, a comprehensive understanding of the factors governing the RIS in this type of sensor remains limited, with existing reports often overlooking the presence of surface plasmon resonance (SPR) phenomena in nanoparticle (NP) assemblies and attributing high RIS to plasmonic coupling or waveguiding effects. Herein, using plasmonic optical fiber sensors based on spherical Au nanoparticles, we investigate the basis of their enhanced RIS, both experimentally and theoretically. The bulk behavior of assembled Au NPs on the optical fiber was investigated using an effective medium approximation (EMA), specifically the gradient effective medium approximation (GEMA). Our findings demonstrate that the Au-coated optical fibers can support the localized surface plasmon resonance (LSPR) as well as SPR in particular scenarios. Interestingly, we found that the nanoparticle sizes and surface coverage dictate which effect takes precedence in determining the RIS of the fiber. Experimental data, in line with numerical simulations, revealed that increasing the Au NP diameter from 20 to 90 nm (15% surface coverage) led to an RIS increase from 135 to 6998 nm/RIU due to a transition from LSPR to SPR behavior. Likewise, increasing the surface coverage of the fiber from 9% to 15% with 90 nm Au nanoparticles resulted in an increase in RIS from 1297 (LSPR) to 6998 nm/RIU (SPR). Hence, we ascribe the exceptional performance of these plasmonic optical fibers primary to SPR effects, as evidenced by the nonlinear RIS behavior. The outstanding RIS of these plasmonic optical fibers was further demonstrated in the detection of thrombin protein, achieving very low limits of detection. These findings support broader applications of high-performance NP-based plasmonic optical fiber sensors in areas such as biomedical diagnostics, environmental monitoring, and chemical analysis. (c) 2024 Chinese Laser Press

2024

Development of a new opto-electrochemical cell for sensing applications

Authors
Mendes, JP; Coelho, LCC; Ribeiro, JA;

Publication
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024

Abstract
New systems with innovative design to perform measurements combining electrochemistry and surface plasmon resonance (ESPR) are currently a need to overcome the limitations of existent market solutions and expand the research possibilities of this technology. The main goal of this work was to develop a new cell to increase ESPR practical applications in several fields. To do so, a homemade SPR cell, fabricated by 3D-printing technology, was adapted for this purpose by incorporating the conventional 3-electrodes to perform the electrochemical experiments. The developed cell was fully compatible with commercial SPR substrates. After optimization of the homemade ESPR setup to perform the combined electrochemical and SPR measurements, two main applications were explored in this work. The first was the use of ESPR technology as straightforward tool to simultaneously investigate the electrical and optical properties of conducing/nonconducting polymers electrosynthetized on the SPR platforms. The conducting polymer poly(thionine) was used in this work for proof-of- concept. The second application envisaged the use of ESPR approach for simple electrodeposition of materials with enhanced plasmonic properties for sensitivity enhancement of SPR biosensors. For validation of the concept, graphene oxide (GO) was electrochemically reduced on gold substrates aiming to evaluate the plasmonic properties of graphene-modified sensing surfaces.

  • 7
  • 230