2016
Authors
Martins, TJM; Marques, MB; Roy, P; Jamier, R; Fevrier, S; Frazao, O;
Publication
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
Temperature-independent strain and angle measurements are achieved resorting to a taper fabricated on a Bragg fiber using a CO2 laser. The characteristic bimodal interference of an untapered Bragg fiber is rendered multimode after taper fabrication and the resulting transmission spectra are analyzed as a function of strain, applied angle, and temperature variations. The intrinsic strain sensitivity exhibited by the Bragg fiber is increased 15 fold after tapering and reaches 22.68 pm/mu epsilon. The angle and temperature measurements are also performed with maximum sensitivities of 185.10 pm/deg and -12.20 pm/K, respectively. The difference in wavelength shift promoted by variations in strain, angle, and temperature for the two fringes studied is examined. Strain and angle sensing with little temperature sensitivity is achieved, presenting a response of 2.87 pm/mu epsilon and -57.31 pm/deg, respectively, for strain values up to 400 mu epsilon and angles up to 10 degrees. Simultaneous angle and strain measurements are demonstrated.
2016
Authors
Monteiro, CS; Ferreira, MS; Silva, SO; Kobelke, J; Schuster, K; Bierlich, J; Frazao, O;
Publication
PHOTONIC SENSORS
Abstract
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m(-1). When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/degrees C to 0.89 pm/degrees C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
2016
Authors
Martins, TJM; Marques, MB; Frazao, O;
Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Abstract
An optical fiber interferometer taper fabricated with a CO2 laser is proposed for strain and curvature-independent temperature measurement. Variations in temperature produce changes in the conditions of the interference between light traveling along the core and cladding and a linear behavior is verified for the relation between the wavelength of the resonant loss peak and temperature, yielding a sensitivity of 110 pm/degrees C for a range between 25 and 510 degrees C. Both the applied strain and curvature only promote significant changes in the transmitted power, leaving the wavelength of the resonant loss peak approximately constant and rendering this optical sensing device a good strain and curvature-independent temperature sensor. (c) 2016 Wiley Periodicals, Inc.
2016
Authors
Andre, RM; Warren Smith, SC; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;
Publication
OPTICS EXPRESS
Abstract
Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 mu m to just a few mu m. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of 15.8 pm/K and -1316 nm/RIU, respectively. (C) 2016 Optical Society of America
2016
Authors
Andre, RM; Warren Smith, SC; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;
Publication
NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XIII
Abstract
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
2016
Authors
Martins, TJM; Marques, MB; Roy, P; Jamier, R; Fevrier, S; Frazao, O;
Publication
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
Temperature-independent strain measurement is achieved resorting to a taper fabricated on a Bragg fibre using a CO2 laser. The characteristic bimodal interference of an untapered Bragg fibre is rendered multimode after taper fabrication and the resulting transmission spectra are analysed as temperature and strain change. The intrinsic strain sensitivity exhibited by the Bragg fibre is increased 15 fold after tapering and reaches 22.68 pm/mu epsilon. The difference in wavelength shift promoted by variations in temperature and strain for the two fringes studied is examined and strain sensing with little temperature sensitivity is achieved, presenting a sensitivity of 2.86 pm/mu epsilon, for strain values up to 400 mu epsilon.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.