Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2015

Eight year experience in open ended instrumentation laboratory

Authors
Marques, MB; Rosa, CC; Marques, PVS;

Publication
EDUCATION AND TRAINING IN OPTICS AND PHOTONICS: ETOP 2015

Abstract
When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

2015

Adam Hilger revisited: a museum instrument as a modern teaching tool

Authors
Carvalhal, MJ; Marques, MB;

Publication
EDUCATION AND TRAINING IN OPTICS AND PHOTONICS: ETOP 2015

Abstract
Spectroscopy can be historically traced down to the study of the dispersion of light by a glass prism. In the early 19th century, inspired by Newton's experiment, Fraunhofer creates a device where an illuminated slit and a lens are placed before the prism; such a device is later transformed, by Kirchoff and Bunsen, into a much handier and more precise observation and measurement instrument, the spectroscope. In the 1930's, the Physics Laboratory of the Faculty of Science of the University of Porto would buy, from Adam Hilger, Ltd., London, a constant deviation spectrometer. The ultimate purpose was to set up a spectroscopy laboratory for teaching and research. This model's robust construction (the telescope and the collimator are rigidly fixed) makes it adequate for student's practice. To sweep across the spectrum, all it takes is to rotate the high quality, constant deviation prism -known as Pellin-Broca prism. Spectra in the 390-900 nm interval are observed, either directly, or through photographic recording, or even by using a thermopile and associated galvanometer, when working in the infra-red range. The wavelength of the line under observation is read straight on a drum, which is fixed to the prism's rotation mechanism. Details of the construction and operation of this spectrometer are explored, against the background of present day spectrometers, automatic and computerized, thereby offering a deeper understanding of spectroscopic analysis: for instance, the use of the raies ultimes powder, a mixture of 50 chemical elements whose emission spectra provide a way of calibrating the instrument.

2015

Effects of Radiofrequencies in Magnetic Resonance Imaging - a short review

Authors
Silva, V; Marques, M; Moreira, J; Ramos, I;

Publication
SHO2015: INTERNATIONAL SYMPOSIUM ON OCCUPATIONAL SAFETY AND HYGIENE

Abstract
Nowadays, Magnetic Resonance Imaging is widely accepted and is becoming an increasingly useful imaging technique. For its functioning, in magnetic resonance equipments there are three main sources of electromagnetic fields: static magnetic fields, time-varying gradient fields and radiofrequencies fields. All of these fields have effects both on patients and workers. The main effect of radiofrequencies fields is heat deposition on human body, which causes tissue heating. There are international guidelines that establish occupational limits for its exposure. A good knowledge of radiofrequencies implications and its safety aspects is vital for better practices in magnetic resonance imaging.

2015

Measuring and teaching light spectrum using Tracker as a spectrometer

Authors
Rodrigues, M; Marques, MB; Simeao Carvalho, PS;

Publication
EDUCATION AND TRAINING IN OPTICS AND PHOTONICS: ETOP 2015

Abstract
In this work we present a simple and low cost setup that allows obtaining the light spectra and measuring the wavelength of its features. It is based on a cheap transmission diffraction grating, an ordinary digital camera and using Tracker software to increase measuring accuracy. This equipment can easily be found in most schools. The experimental setup is easy to implement (the typical setup for a pocket spectroscope) replacing the eye with the camera. The calibration is done using a light source with a well-known spectrum. The acquired images are analyzed with Tracker (freeware software frequently used for motion studies). With this system, we have analyzed several light sources. As an example, the analysis of the spectra obtained with compact fluorescent lamp allowed to recognize the spectrum of mercury in the lamp, as expected. This spectral analysis is therefore useful in schools, among other topics, to enable the recognition of chemical elements through spectroscopy, and to alert students to the different spectra of illuminating light sources used in houses and public places.

2015

New SPR PCF D-type optical fiber sensor configuration for refractive index measurement

Authors
Santos, DF; Guerreiro, A; Baptista, JM;

Publication
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
This paper presents the performance analysis of a new geometry sensing configuration for refractive index, based on surface plasmon resonance (SPR) in photonic crystal fiber (PCF) D-type optical fiber with a thin gold layer, using the finite element method (FEM). The configuration is analyzed in terms of the loss. The results are compared with a conventional SPR D-type and with a PCF D-type optical fiber sensor for refractive index measurement. The simulation results show an improvement of the sensitivity and resolution (3.70x10(3)nm/RIU and 2.72x10(-5)RIU, respectively, when considering an accurately spectral variation detection of 0.1nm).

2015

SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement

Authors
Santos, DF; Guerreiro, A; Baptista, JM;

Publication
IEEE SENSORS JOURNAL

Abstract
This paper presents the performance analysis of a sensing configuration of refractive index, based on surface plasmon resonance (SPR) in microstructured D-type optical fiber with a thin gold layer, using the finite-element method. The configuration is analyzed in terms of the loss and distribution Poynting vector. The results are compared with a conventional SPR D-type optical fiber sensor for refractive index measurement. The simulation results show an improvement of the sensitivity and resolution (10 x 10(3) nm/RIU and 9.8 x 10(-6) RIU, respectively, when considering an accurately spectral variation detection of 0.1 nm).

  • 84
  • 233