Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CAP

2023

Optical Fiber Surface Plasmon Resonance for Glucose Detection

Authors
Cunha, C; Silva, S; Coelho, LCC; Frazão, O; Novais, S;

Publication
EPJ Web of Conferences

Abstract
This work proposes a sensor that utilizes a transmission scheme for measuring glucose aqueous solutions based on surface plasmon resonance. A comparison between the performance of two sensors with similar lengths and different diameters is performed. The first sensor comprises a multimode optical fiber with a diameter of 400 µm and a 10 mm middle section of the cladding removed. The second sensor is similar, except that the fiber has a diameter of 600 µm. The sensors were evaluated for their performance in measuring glucose concentrations ranging from 0.0001 to 0.5000 g/mL. The 400 µm sensor demonstrated high sensitivity however, the sensor with a diameter of 600 µm attained a slightly higher maximum sensitivity of 322.0 nm/(g/mL).

2023

NonInvasive Glucose Fiber Sensor Based on Self-Imaging Technique: Proof of Concept

Authors
Cunha, C; Silva, S; Frazão, O; Novais, S;

Publication
EPJ Web of Conferences

Abstract
This paper proposes a proof of concept for a reflective fiber optic sensor based on multimode interference, designed to measure glucose concentrations in aqueous solutions that mimic the range of glucose concentrations found in human saliva. The sensor is fabricated by splicing a short section of coreless silica fiber into a standard single-mode fiber. By studying the principles of multimode interference and Self-imaging it was developed a sensing head that has a total length of 29.1 mm, approximately equal to the second self-image cycle. This sensing head allowed us to detect low concentrations of glucose (ranging from 0 to 268 mg/dl).

2022

Tunable Plasmonic Resonance Sensor Using a Metamaterial Film in a D-Shaped Photonic Crystal Fiber for Refractive Index Measurements

Authors
Cardoso, MP; Silva, AO; Romeiro, AF; Giraldi, MTR; Costa, JCWA; Santos, JL; Baptista, JM; Guerreiro, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
Subwavelength cells of metallic nanorods arrayed in a dielectric background, termed "metamaterials", present bulk properties that are useful to control and manipulate surface plasmon resonances. Such feature finds tremendous potential in providing a broad manifold of applications for plasmonic optical sensors. In this paper, we propose a surface-plasmon-resonance-based sensor with spectral response tunable by the volume fraction of silver present in a metamaterial layer deposited on a D-shaped photonic crystal fiber. Using computational simulations, we show that sensitivity and resolution can be hugely altered by changing the amount of constituents in the metamaterial, with no further modifications in the structure of the sensor. Moreover, the designed sensor can also be applied to label the average volume fraction of silver in the metamaterial layer and then to estimate its effective constitutive parameters.

2022

A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Fernandes, CS; Frazao, O; Costa, JCWA; Santos, JL;

Publication
SENSORS

Abstract
In many areas, the analysis of a cylindrical structure is necessary, and a form to analyze it is by evaluating the diameter changes. Some areas can be cited: pipelines for oil or gas distribution and radial growth of trees whose diameter changes are directly related to irrigation and the radial expansion since it depends on the water soil deficit. For some species, these radial variations can change in around 5 mm. This paper proposes and experimentally investigates a sensor based on a core diameter mismatch technique for diameter changes measurement. The sensor structure is a combination of a cylindrical piece developed using a 3D printer and a Mach-Zehnder interferometer. The pieces were developed to assist in monitoring the diameter variation. It is formed by splicing an uncoated short section of MMF (Multimode Fiber) between two standard SMFs (Singlemode Fibers) called SMF-MMF-SMF (SMS), where the MMF length is 15 mm. The work is divided into two main parts. Firstly, the sensor was fixed at two points on the first developed piece, and the diameter reduction caused dips or peaks shift of the transmittance spectrum due to curvature and strain influence. The fixation point (FP) distances used are: 5 mm, 10 mm, and 15 mm. Finally, the setup with the best sensitivity was chosen, from first results, to develop another test with an optimization. This optimization is performed in the printed piece where two supports are created so that only the strain influences the sensor. The results showed good sensitivity, reasonable dynamic range, and easy setup reproduction. Therefore, the sensor could be used for diameter variation measurement for proposed applications.

2022

Optical Strain Gauge Prototype Based on a High Sensitivity Balloon-like Interferometer and Additive Manufacturing

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Frazao, O; Costa, JCWA; Santos, JL;

Publication
SENSORS

Abstract
An optical strain gauge based on a balloon-like interferometer structure formed by a bent standard single-mode fiber combined with a 3D printer piece has been presented and demonstrated, which can be used to measure displacement. The interferometer has a simple and compact size, easy fabrication, low cost, and is repeatable. The sensor is based on the interference between the core and cladding modes. This is caused by the fiber's curvature because when light propagates through the curved balloon-shaped interferometer region, a portion of it will be released from the core limitation and coupled to the cladding. The balloon has an axial displacement as a result of how the artwork was constructed. The sensor head is sandwiched between two cantilevers such that when there is a displacement, the dimension associated with the micro bend is altered. The sensor response as a function of displacement can be determined using wavelength shift or intensity change interrogation techniques. Therefore, this optical strain gauge is a good option for applications where structure displacement needs to be examined. The sensor presents a sensitivity of 55.014 nm for displacement measurements ranging from 0 to 10 mm and a strain sensitivity of 500.13 pm/mu epsilon.

2022

Unscrambling spectral interference and matrix effects in Vitis vinifera Vis-NIR spectroscopy: Towards analytical grade 'in vivo' sugars and acids quantification

Authors
Martins, RC; Barroso, TG; Jorge, P; Cunha, M; Santos, F;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Analytical grade 'in vivo' plant metabolic quantification using spectroscopy is a key enabling technology for precision agriculture.Current methods such as PLS, ANN and LS-SVM are non-optimal for resolving spectral interference and matrix effects to provide similar results to the analytical chemistry laboratory. This research presents a new self-learning artificial intelligence (SL-AI) method based on the search of covariance modes. These isolate the different modes of interference present in spectral data, allowing the consistent quantification of constituents. A review of the state-of-the-art methods with the figures of merit mean absolute standard error percentage (MASEP) and Pearson correlation coefficient (R) is presented for comparison and discussion. 707 grapes were quantified for glucose, fructose, malic and tartaric acids in five wine-making and one table grape varieties, and used to benchmark the new method against the state-of-the-art methodologies: partial least squares, local partial least squares, artificial neural networks and least squares support vector machines. SL-AI provides consistent quantifications, whereas previous methods exhibit data-driven performance dependence. Pearson correlations of 0.93 to 0.99 and MASEP of 3.70% to 7.33% were obtained with the new methodology. Local partial least squares, the method with the best benchmarks from literature, achieved correlations of 0.81 to 0.94 and MASEP of 8.00% to 13.4%. The covariance mode isolates a particular interference, providing a direct relationship between spectral inference and constituent concentrations, consistent with the Beer-Lambert law. Such quantifies non-dominant absorbance constituents (e.g. sugars and acids), which is a significant step towards 'in vivo' plant physiology-based precision agriculture.

  • 9
  • 231