Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2021

Extending a Trust model for Energy Trading with Cyber-Attack Detection

Authors
Andrade, R; Wannous, S; Pinto, T; Praca, I;

Publication
ELECTRONICS

Abstract
This paper explores the concept of the local energy markets and, in particular, the need for trust and security in the negotiations necessary for this type of market. A multi-agent system is implemented to simulate the local energy market, and a trust model is proposed to evaluate the proposals sent by the participants, based on forecasting mechanisms that try to predict their expected behavior. A cyber-attack detection model is also implemented using several supervised classification techniques. Two case studies were carried out, one to evaluate the performance of the various classification methods using the IoT-23 cyber-attack dataset; and another one to evaluate the performance of the developed trust mode.

2021

Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support

Authors
Santos, G; Pinto, T; Vale, Z;

Publication
ELECTRONICS

Abstract
This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets' constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support tool.

2021

Consumer Flexibility Aggregation Using Partition Function Games With Non-Transferable Utility

Authors
Pinto, T; Wooldridge, M; Vale, Z;

Publication
IEEE ACCESS

Abstract
This paper explores the aggregation of electricity consumers flexibility. A novel coalitional game theory model for partition function games with non-transferable utility is proposed. This model is used to formalize a game in which electricity consumers find coalitions among themselves in order to trade their consumption flexibility in the electricity market. Utility functions are defined to enable measuring the players preferences. Two case studies are presented, including a simple illustrative case, which assesses and explains the model in detail; and a large-scale scenario based on real data, comprising more than 20,000 consumers. Results show that the proposed model is able to reach solutions that are more suitable for the consumers when compared to the solutions achieved by traditional aggregation techniques in power and energy systems, such as clustering-based methodologies. The solutions found by the proposed model consider the perspectives from all players involved in the game and thus are able to reflect the rational behaviour of the involved players, rather than imposing an aggregation solution that is only beneficial from the perspective of the aggregator.

2021

Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions

Authors
Faia, R; Soares, J; Pinto, T; Lezama, F; Vale, Z; Corchado, JM;

Publication
IEEE ACCESS

Abstract
The current energy strategy of the European Union puts the end-user as a key participant in electricity markets. The creation of energy communities has been encouraged by the European Union to increase the penetration of renewable energy and reduce the overall cost of the energy chain. Energy communities are mostly composed of prosumers, which may be households with small-size energy production equipment such as rooftop photovoltaic panels. The local electricity market is an emerging concept that enables the active participation of end-user in the electricity markets and is especially interesting when energy communities are in place. This paper proposes an optimization model to schedule peer-to-peer transactions via local electricity market, grid transactions in retail market, and battery management considering the photovoltaic production of households. Prosumers have the possibility of transacting energy with the retailer or with other consumers in their community. The problem is modeled using mixed-integer linear programming, containing binary and continuous variables. Four scenarios are studied, and the impact of battery storage systems and peer-to-peer transactions is analyzed. The proposed model execution time according to the number of prosumers involved (3, 5, 10, 15, or 20) in the optimization is analyzed. The results suggest that using a battery storage system in the energy community can lead to energy savings of 11-13%. Besides, combining the use of peer-to-peer transactions and energy storage systems can potentially provide energy savings of up to 25% in the overall costs of the community members.

2021

Ensemble learning for electricity consumption forecasting in office buildings

Authors
Pinto, T; Praca, I; Vale, Z; Silva, J;

Publication
NEUROCOMPUTING

Abstract
This paper presents three ensemble learning models for short term load forecasting. Machine learning has evolved quickly in recent years, leading to novel and advanced models that are improving the forecasting results in multiple fields. However, in highly dynamic fields such as power and energy systems, dealing with the fast acquisition of large amounts of data from multiple data sources and taking advantage from the correlation between the multiple available variables is a challenging task, for which current models are not prepared. Ensemble learning is bringing promising results in this sense, as, by combining the results and use of multiple learners, is able to find new ways for current learning models to be used and optimized. In this paper three ensemble learning models are developed and the respective results compared: gradient boosted regression trees, random forests and an adaptation of Adaboost. Results for electricity consumption forecasting in hour-ahead are presented using a case-study based on real data from an office building. Results show that the adapted Adaboost model outperforms the reference models for hour-ahead load forecasting.

2021

Portfolio optimization of electricity markets participation using forecasting error in risk formulation*

Authors
Faia, R; Pinto, T; Vale, Z; Corchado, JM;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Recent changes in the energy sector are increasing the importance of portfolio optimization for market participation. Although the portfolio optimization problem is most popular in finance and economics, it is only recently being subject of study and application in electricity markets. Risk modeling in this domain is, however, being addressed as in the classic portfolio optimization problem, where investment diversity is the adopted measure to mitigate risk. The increasing unpredictability of market prices as reflection of the renewable generation variability brings a new dimension to risk formulation, as market participation risk should consider the prices variation in each market. This paper thereby proposes a new portfolio optimization model, considering a new approach for risk management. The problem of electricity allocation between different markets is formulated as a classic portfolio optimization problem considering market prices forecast error as part of the risk asset. Dealing with a multi-objective problem leads to a heavy computational burden, and for this reason a particle swarm optimization-based method is applied. A case study based on real data from the Iberian electricity market demonstrates the advantages of the proposed approach to increase market players? profits while minimizing the market participation risk.

  • 135
  • 589