Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2015

Task partitioning and priority assignment for distributed hard real-time systems

Authors
Garibay Martinez, R; Nelissen, G; Ferreira, LL; Pinho, LM;

Publication
JOURNAL OF COMPUTER AND SYSTEM SCIENCES

Abstract
In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic that finds a feasible partitioning and priority assignment for distributed applications based on the linear transactional model. DOPA partitions the tasks and messages in the distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm known as Audsley's algorithm, to find the priorities for that partition. The experimental results show how the use of the OPA algorithm increases in average the number of schedulable tasks and messages in a distributed system when compared to the use of Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these results to the assignment of Parallel/Distributed applications and present a second heuristic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction transformation algorithm introduced in [1].

2015

Allocation of Parallel Real-Time Tasks in Distributed Multi-core Architectures Supported by an FTT-SE Network

Authors
Garibay Martinez, R; Nelissen, G; Ferreira, LL; Pinho, LM;

Publication
ARCHITECTURE OF COMPUTING SYSTEMS - ARCS 2015

Abstract
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.

2015

Convergence of Smart Grid ICT Architectures for the Last Mile

Authors
Albano, M; Ferreira, LL; Pinho, LM;

Publication
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Abstract
The evolution of the electrical grid into a smart grid, allowing user production, storage, and exchange of energy; remote control of appliances; and, in general, optimizations over how the energy is managed and consumed, is an evolution into a complex information and communication technology (ICT) system. With the goal of promoting an integrated and interoperable smart grid, a number of organizations all over the world started uncoordinated standardization activities, which caused the emergence of a large number of incompatible architectures and standards. There are now new standardization activities that have the goal of organizing existing standards and produce best practices to choose the right approach(es) to be employed in specific smart grid designs. This paper follows the lead of the National Institute of Standards and Technology (NIST) and the European Telecommunications Standards Institute/European Committee for Standardization/European Committee for Electrotechnical Standardization (ETSI/CEN/CENELEC) approaches in trying to provide taxonomy of existing solutions; our contribution reviews and relates current ICT state of the art with the objective of forecasting future trends based on the orientation of current efforts and on relationships between them. The resulting taxonomy provides guidelines for further studies of the architectures, and highlights how the standards in the last mile of the smart grid are converging to common solutions to improve ICT infrastructure interoperability.

2015

Message-oriented middleware for smart grids

Authors
Albano, M; Ferreira, LL; Pinho, LM; Alkhawaja, AR;

Publication
COMPUTER STANDARDS & INTERFACES

Abstract
In order to increase the efficiency in the use of energy resources, the electrical grid is slowly evolving into a smart(er) grid that allows users' production and storage of energy, automatic and remote control of appliances, energy exchange between users, and in general optimizations over how the energy is managed and consumed. One of the main innovations of the smart grid is its organization over an energy plane that involves the actual exchange of energy, and a data plane that regards the Information and Communication Technology (ICT) infrastructure used for the management of the grid's data. In the particular case of the data plane, the exchange of large quantities of data can be facilitated by a middleware based on a messaging bus. Existing messaging buses follow different data management paradigms (e.g.: request/response, publish/subscribe, data-oriented messaging) and thus satisfy smart grids' communication requirements at different extents. This work contributes to the state of the art by identifying, in existing standards and architectures, common requirements that impact in the messaging system of a data plane for the smart grid. The paper analyzes existing messaging bus paradigms that can be used as a basis for the ICT infrastructure of a smart grid and discusses how these can satisfy smart grids' requirements.

2015

An Energy Flexibility Framework on the Internet of Things

Authors
Pedersen, TB; Le Gully, T; Pedersen, PD; Ferreira, LL; Šikšnys, L; Stluka, P; Albano, M; Skou, A; Olsen, P;

Publication
The Success of European Projects using New Information and Communication Technologies

Abstract
This paper presents a framework for management of flexible energy loads in the context of the Internet of Things and the Smart Grid. The framework takes place in the European project Arrowhead, and aims at taking advantage of the flexibility (in time and power) of energy production and consumption offered by sets of devices, appliances or buildings, to help at solving the issue of fluctuating energy production of renewable energies. The underlying concepts are explained, the actors involved in the framework, their incentives and interactions are detailed, and a technical overview is provided. An implementation of the framework is presented, as well as the expected results of the pilots.

2015

Allocation of Parallel Real-Time Tasks in Distributed Multi-core Architectures supported by an FTT-SE Network

Authors
Martínez, Ricardo Garibay; Nelissen, Geoffrey; Ferreira, Luís Lino; Pinho, Luís Miguel;

Publication

Abstract
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.

  • 439
  • 657