Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2023

Exploring Pseudo-Haptics for Object Compliance in Virtual Reality

Authors
Lousada, C; Mendes, D; Rodrigues, R;

Publication
International Conference on Graphics and Interaction, ICGI 2023, Tomar, Portugal, November 2-3, 2023

Abstract
Virtual Reality (VR) has opened avenues for users to immerse themselves in virtual 3D environments, simulating reality across various domains like health, education, and entertainment. Haptic feedback plays a pivotal role in achieving lifelike experiences. However, the accessibility of haptic devices poses challenges, prompting the exploration of alternatives. In response, Pseudo-Haptic feedback has emerged, utilizing visual and auditory cues to create illusions or modify perceived haptic feedback. Given that many pseudo-haptic techniques are yet to be tailored for VR, our proposal involves combining and adapting multiple techniques to enhance compliance perception in virtual environments. By modifying the Mass-Spring-Damper model and incorporating hand-tracking software along with an inverse kinematics algorithm, our aim is to deliver compliance feedback through visual stimuli, thereby elevating the realism of the overall experience. The outcomes were encouraging, with numerous participants expressing their ability to easily discern various compliance levels with high confidence, all within a realistic and immersive environment. Additionally, we observed an impact of object scale on the perception of compliance in specific scenarios, as participants noted a tendency to perceive smaller objects as more compliant. © 2023 IEEE.

2023

Detection of Intermittent Claudication from Smartphone Inertial Data in Community Walks Using Machine Learning Classifiers

Authors
Pinto, B; Correia, MV; Paredes, H; Silva, I;

Publication
SENSORS

Abstract
Peripheral arterial disease (PAD) causes blockage of the arteries, altering the blood flow to the lower limbs. This blockage can cause the individual with PAD to feel severe pain in the lower limbs. The main contribution of this research is the discovery of a solution that allows the automatic detection of the onset of claudication based on data analysis from patients' smartphones. For the data-collection procedure, 40 patients were asked to walk with a smartphone on a thirty-meter path, back and forth, for six minutes. Each patient conducted the test twice on two different days. Several machine learning models were compared to detect the onset of claudication on two different datasets. The results suggest that we can identify the onset of claudication using inertial sensors with a best case accuracy of 92.25% for the Extreme Gradient Boosting model.

2023

Bird's eye view of augmented reality and applications for education and training: A survey of surveys and reviews

Authors
Cruz, A; Paredes, H; Martins, P;

Publication
COMPUTER APPLICATIONS IN ENGINEERING EDUCATION

Abstract
Augmented reality (AR) is a field of knowledge being developed since the middle of the last century. Its use has been spreading because of its usefulness, but more recently because of mobile platforms being widespread and accessible. AR has been applied in several fields of activity, and also in the field of Education and Training, because AR has several advantages over other teaching methods. In this paper, we search and analyze surveys and reviews of AR to present a brief history and its definition. We also present a classification of our sample under a scheme we developed in past work, and present also examples of technologies and applications of AR in each field. Finally, we do a deeper analysis over the publications of Education and Training, advantages and issues of AR in this field, and some research trends.

2023

Stigmergy in Crowdsourcing and Task Fingerprinting: Study on Behavioral Traces of Weather Experts in Interaction Logs

Authors
Paulino, D; Correia, A; Guimarães, D; Chaves, R; Melo, G; Schneider, D; Barroso, J; Paredes, H;

Publication
26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023, Rio de Janeiro, Brazil, May 24-26, 2023

Abstract

2023

Exploring Stigmergic Collaboration and Task Modularity Through an Expert Crowdsourcing Annotation System: The Case of Storm Phenomena in the Euro-Atlantic Region

Authors
Paulino, D; Correia, A; Yagui, MMM; Barroso, J; Liberato, MLR; Vivacqua, AS; Grover, A; Bigham, JP; Paredes, H;

Publication
IEEE ACCESS

Abstract
Extreme weather events, such as windstorms, hurricanes, and heat waves, exert a significant impact on global natural catastrophes and pose substantial challenges for weather forecasting systems. To enhance the accuracy and preparedness for extreme weather events, this study explores the potential of using expert crowdsourcing in storm forecasting research through the application of stigmergic collaboration. We present the development and implementation of an expert Crowdsourcing for Semantic Annotation of Atmospheric Phenomena (eCSAAP) system, designed to leverage the collective knowledge and experience of meteorological experts. Through a participatory co-creation process, we iteratively developed a web-based annotation tool capable of capturing multi-faceted insights from weather data and generating visualizations for expert crowdsourcing campaigns. In this context, this article investigates the intrinsic coordination among experts engaged in crowdsourcing tasks focused on the semantic annotation of extreme weather events. The study brings insights about the behavior of expert crowds by considering the cognitive biases and highlighting the impact of existing annotations on the quality of data gathered from the crowd and the collective knowledge generated. The insights regarding the crowdsourcing dynamics, particularly stigmergy, offer a promising starting point for utilizing stigmergic collaboration as an effective coordination mechanism for weather experts in crowdsourcing platforms but also in other domains requiring expertise-driven collective intelligence.

2023

CuraZone: The tool to care for populated areas

Authors
Jardim, R; Quiliche, R; Chong, M; Paredes, H; Vivacqua, A;

Publication
SOFTWARE IMPACTS

Abstract
The COVID-19 pandemic highlighted the inadequate readiness of numerous nations to address diseases that could potentially evolve into epidemics or pandemics, posing risks to health systems and supply chains. Statistical analysis and predictive models were developed to manage COVID-19 and other diseases that harm public health. However, few public-policy decision-support tools are documented in the literature, although several governments have created them. In line with the previous developments, this tool uses socioeconomic features to model the COVID-19 province's mortality rates. This paper presents a tool to predict the mortality rate of a province using supervised learning techniques, named CuraZone. This tool was validated using 196 provinces in Peru for training and considering 31 characteristics. The tool displays the dataset's most essential characteristics, shows the country's mean square error (MSE), and predicts a province's mortality rate. In addition, the tool contributes to the field of Explainable AI (XAI), as it shows the importance of each feature. Highlighted contributions of this work include the support for the decision-making of governments or stakeholders in epidemics, providing the source code in an open and reproducible way, and the estimated mortality rate for specific populations of a neighborhood, city, or country.

  • 56
  • 641