Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2024

Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 1: GRAPP, HUCAPP and IVAPP, Rome, Italy, February 27-29, 2024

Authors
Rogers, TB; Méneveaux, D; Ziat, M; Ammi, M; Jänicke, S; Purchase, HC; Bouatouch, K; de Sousa, AA;

Publication
VISIGRAPP (1): GRAPP, HUCAPP, IVAPP

Abstract

2024

AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in Computer Vision for Autonomous Mobile Robots

Authors
Ferreira, BG; de Sousa, AJM; Reis, LP; de Sousa, AA; Rodrigues, R; Rossetti, R;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III

Abstract
This article proposes the Artificial Intelligence Models Switching Mechanism (AIMSM), a novel approach to optimize system resource utilization by allowing systems to switch AI models during runtime in dynamic environments. Many real-world applications utilize multiple data sources and various AI models for different purposes. In many of those applications, every AI model doesn’t have to operate all the time. The AIMSM strategically allows the system to activate and deactivate these models, focusing on system resource optimization. The switching of each AI model can be based on any information, such as context or previous results. In the case study of an autonomous mobile robot performing computer vision tasks, the AIMSM helps the system to achieve a significant increment in performance, with a 50% average increase in frames per second (FPS) rate, for this specific case study, assuming that no erroneous switching occurred. Experimental results have demonstrated that the AIMSM can improve system resource utilization efficiency when properly implemented, optimize overall resource consumption, and enhance system performance. The AIMSM presented itself as a better alternative to permanently loading all the models simultaneously, improving the adaptability and functionality of the systems. It is expected that using the AIMSM will yield a performance improvement that is particularly relevant to systems with multiple AI models of a complex nature, where such models do not need to be all continuously executed or systems that will benefit from lower resource usage. Code is available at https://github.com/BrunoGeorgevich/AIMSM. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Guidelines for reproducible analysis of adaptive immune receptor repertoire sequencing data

Authors
Peres, A; Klein, V; Frankel, B; Lees, W; Polak, P; Meehan, M; Rocha, A; Lopes, JC; Yaari, G;

Publication
BRIEFINGS IN BIOINFORMATICS

Abstract
Enhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation. This is accompanied by versioned containers, documentation and archiving capabilities. The automation of pre-processing analysis steps and the ability to modify pipeline parameters according to specific research needs are emphasized. AIRR-seq data analysis is highly sensitive to varying parameters and setups; using the guidelines presented here, the ability to reproduce previously published results is demonstrated. This work promotes transparency, reproducibility, and collaboration in AIRR-seq data analysis, serving as a model for handling and documenting bioinformatics pipelines in other research domains.

2024

Report from the 14th International Workshop on Automating Test Case Design, Selection, and Evaluation (A-TEST 2023)

Authors
Faria, JP; Verbeek, F; Fasolino, AR;

Publication
ACM SIGSOFT Softw. Eng. Notes

Abstract

2024

Quality of Information and Communications Technology - 17th International Conference on the Quality of Information and Communications Technology, QUATIC 2024, Pisa, Italy, September 11-13, 2024, Proceedings

Authors
Bertolino, A; Faria, JP; Lago, P; Semini, L;

Publication
QUATIC

Abstract

2024

APITestGenie: Automated API Test Generation through Generative AI

Authors
Pereira, A; Lima, B; Faria, JP;

Publication
CoRR

Abstract

  • 7
  • 641