Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2024

EVLearn: Extending the CityLearn Framework with Electric Vehicle Simulation

Authors
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Nweye, K; Ghose, D; Nagy, Z;

Publication
CoRR

Abstract
Intelligent energy management strategies, such as Vehicle-to-Grid (V2G) and Grid-to-Vehicle (V1G) emerge as a potential solution to the Electric Vehicles’ (EVs) integration into the energy grid. These strategies promise enhanced grid resilience and economic benefits for both vehicle owners and grid operators. Despite the announced perspective, the adoption of these strategies is still hindered by an array of operational problems. Key among these is the lack of a simulation platform that allows to validate and refine V2G and V1G strategies. Including the development, training, and testing in the context of Energy Communities (ECs) incorporating multiple flexible energy assets. Addressing this gap, first we introduce the EVLearn, an open-source extension for the existing CityLearn simulation framework. EVLearn provides both V2G and V1G energy management simulation capabilities into the study of broader energy management strategies of CityLearn by modeling EVs, their charging infrastructure and associated energy flexibility dynamics. Results validated the extension of CityLearn, where the impact of these strategies is highlighted through a comparative simulation scenario. © The Author(s) 2025.

2024

EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle-to-Grid Energy Management

Authors
Fonseca, T; Ferreira, L; Cabral, B; Severino, R; Praça, I;

Publication
2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS, SMARTGRIDCOMM 2024

Abstract
The rising adoption rates and integration of Renewable Energy Sources (RES) and Electric Vehicles (EVs) into the energy grid introduces complex challenges, including the need to balance supply and demand and smooth peak consumptions. Addressing these challenges requires innovative solutions such as Demand Response (DR), Renewable Energy Communities (RECs), and more specifically for EVs, Vehicle-to-Grid (V2G). However, existing V2G approaches often fall short in real-world applicability, adaptability, and user engagement. To bridge this gap, this paper proposes EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management algorithm leveraging the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. EnergAIze enables user-centric multi-objective energy management by allowing each prosumer to select from a range of personal management objectives. Additionally, it architects' data protection and ownership through decentralized deployment, where each prosumer can situate an energy management node directly at their own dwelling. The local node not only manages local EVs and other energy assets but also fosters REC wide optimization. EnergAIze is evaluated through a case study using the CityLearn framework. The results show reduction in peak loads, ramping, carbon emissions, and electricity costs at the REC level while optimizing for individual prosumers objectives.

2024

CityLearn v2: energy-flexible, resilient, occupant-centric, and carbon-aware management of grid-interactive communities

Authors
Nweye, K; Kaspar, K; Buscemi, G; Fonseca, T; Pinto, G; Ghose, D; Duddukuru, S; Pratapa, P; Li, H; Mohammadi, J; Ferreira, LL; Hong, TZ; Ouf, M; Capozzoli, A; Nagy, Z;

Publication
JOURNAL OF BUILDING PERFORMANCE SIMULATION

Abstract
As more distributed energy resources become part of the demand-side infrastructure, quantifying their energy flexibility on a community scale is crucial. CityLearn v1 provided an environment for benchmarking control algorithms. However, there is no standardized environment utilizing realistic building-stock datasets for distributed energy resource control benchmarking without co-simulation or third-party frameworks. CityLearn v2 extends CityLearn v1 by providing a stand-alone simulation environment that leverages the End-Use Load Profiles for the U.S. Building Stock dataset to create grid-interactive communities for resilient, multi-agent, and objective control of distributed energy resources with dynamic occupant feedback. While the v1 environment used pre-simulated building thermal loads, the v2 environment uses data-driven thermal dynamics and eliminates the need for co-simulation with building energy performance software. This work details the v2 environment and provides application examples that use reinforcement learning control to manage battery energy storage system, vehicle-to-grid control, and thermal comfort during heat pump power modulation.

2024

Time-predictable task-to-thread mapping in multi-core processors

Authors
Samadi, M; Royuela, S; Pinho, LM; Carvalho, T; Quinones, E;

Publication
JOURNAL OF SYSTEMS ARCHITECTURE

Abstract
The performance of time-predictable systems can be improved in multi-core processors using parallel programming models (e.g., OpenMP). However, schedulability analysis of parallel applications is a big challenge due to their sophisticated structure. The common drawbacks of current task-to-thread mapping approaches in OpenMP are that they (i) utilize a global queue in the mapping process, which may increase contention, (ii) do not apply heuristic techniques, which may reduce the predictability and performance of the system, and (iii) use basic analytical techniques, which may cause notable pessimism in the temporal conditions. Accordingly, this paper proposes a task-to-thread mapping method in multi-core processors based on the OpenMP framework. The mapping process is carried out through two phases: allocation and dispatching. Each thread has an allocation queue in order to minimize contention, and the allocation and dispatching processes are performed using several heuristic algorithms to enhance predictability. In the allocation phase, each task-part from the OpenMP DAG is allocated to one of the allocation queues, which includes both sibling and child task-parts. A suitable thread (i.e., allocation queue) is selected using one of the suggested heuristic allocation algorithms. In the dispatching phase, when a thread is idle, a task-part is selected from its allocation queue using one of the suggested heuristic dispatching algorithms and then dispatched to and executed by the thread. The performance of the proposed method is evaluated under different conditions (e.g., varying the number of tasks and the number of threads) in terms of application response time and overhead of the mapping process. The simulation results show that the proposed method surpasses the other methods, especially in the scenario that includes overhead of the mapping. In addition, a prototype implementation of the main heuristics is evaluated using two kernels from real-world applications, showing that the methods work better than LLVM's default scheduler in most of the configurations.

2024

Real-Time Parallel Programming for Homogeneous Multicores

Authors
Pinho, LM;

Publication
2024 IEEE 14TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL EMBEDDED SYSTEMS, SIES

Abstract
Developing real-time systems applications requires programming paradigms that can handle the specification of concurrent activities and timing constraints, and controlling execution on a particular platform. The increasing need for high-performance, and the use of fine-grained parallel execution, makes this an even more challenging task. This paper explores the state-of-the-art and challenges in real-time parallel application development, focusing on two research directions: one from the high- performance domain (using OpenMP) and another from the real-time and critical systems field (based on Ada). The paper reviews the features of each approach and highlights remaining open issues.

2024

The Synergy between Artificial Intelligence, Remote Sensing, and Archaeological Fieldwork Validation

Authors
Canedo, D; Hipólito, J; Fonte, J; Dias, R; do Pereiro, T; Georgieva, P; Gonçalves Seco, L; Vázquez, M; Pires, N; Fábrega Alvarez, P; Menéndez Marsh, F; Neves, AJR;

Publication
REMOTE SENSING

Abstract
The increasing relevance of remote sensing and artificial intelligence (AI) for archaeological research and cultural heritage management is undeniable. However, there is a critical gap in this field. Many studies conclude with identifying hundreds or even thousands of potential sites, but very few follow through with crucial fieldwork validation to confirm their existence. This research addresses this gap by proposing and implementing a fieldwork validation pipeline. In northern Portugal's Alto Minho region, we employed this pipeline to verify 237 potential burial mounds identified by an AI-powered algorithm. Fieldwork provided valuable information on the optimal conditions for burial mounds and the specific factors that led the algorithm to err. Based on these insights, we implemented two key improvements to the algorithm. First, we incorporated a slope map derived from LiDAR-generated terrain models to eliminate potential burial mound inferences in areas with high slopes. Second, we trained a Vision Transformer model using digital orthophotos of both confirmed burial mounds and previously identified False Positives. This further refines the algorithm's ability to distinguish genuine sites. The improved algorithm was then tested in two areas: the original Alto Minho validation region and the Barbanza region in Spain, where the location of burial mounds was well established through prior field work.

  • 71
  • 680