Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2023

A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem

Authors
Guo, WK; Vanhoucke, M; Coelho, J;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
The branch-and-bound (B&B) procedure is one of the most widely used techniques to get optimal so-lutions for the resource-constrained project scheduling problem (RCPSP). Recently, various components from the literature have been assembled by Coelho and Vanhoucke (2018) into a unified search algo-rithm using the best performing lower bounds, branching schemes, search strategies, and dominance rules. However, due to the high computational time, this procedure is only suitable to solve small to medium-sized problems. Moreover, despite its relatively good performance, not much is known about which components perform best, and how these components should be combined into a procedure to maximize chances to solve the problem. This paper introduces a structured prediction approach to rank various combinations of components (configurations) of the integrated B&B procedure. More specifically, two regression methods are used to map project indicators to a full ranking of configurations. The objec-tive is to provide preference information about the quality of different configurations to obtain the best possible solution. Using such models, the ranking of all configurations can be predicted, and these predic-tions are then used to get the best possible solution for a new project with known network and resource values. A computational experiment is conducted to verify the performance of this novel approach. Fur-thermore, the models are tested for 48 different configurations, and their robustness is investigated on datasets with different numbers of activities. The results show that the two models are very competitive, and both can generate significantly better results than any single-best configuration.

2023

Automated design of priority rules for resource-constrained project scheduling problem using surrogate-assisted genetic programming

Authors
Luo, JY; Vanhoucke, M; Coelho, J;

Publication
SWARM AND EVOLUTIONARY COMPUTATION

Abstract
In the past few years, the genetic programming approach (GP) has been successfully used by researchers to design priority rules for the resource-constrained project scheduling problem (RCPSP) thanks to its high generalization ability and superior performance. However, one of the main drawbacks of the GP is that the fitness evaluation in the training process often requires a very high computational effort. In order to reduce the runtime of the training process, this research proposed four different surrogate models for the RCPSP. The experiment results have verified the effectiveness and the performance of the proposed surrogate models. It is shown that they achieve similar performance as the original model with the same number of evaluations and better performance with the same runtime. We have also tested the performance of one of our surrogate models with seven different population sizes to show that the selected surrogate model achieves similar performance for each population size as the original model, even when the searching space is sufficiently explored. Furthermore, we have investigated the accuracy of our proposed surrogate models and the size of the rules they designed. The result reveals that all the proposed surrogate models have high accuracy, and sometimes the rules found by them have a smaller size compared with the original model.

2023

on the summary measures for the resource-constrained project scheduling problem (Jul, 10.1007/s10479-023-05470-8, 2023)

Authors
Van Eynde, R; Vanhoucke, M; Coelho, J;

Publication
ANNALS OF OPERATIONS RESEARCH

Abstract

2023

A method for selecting processes for automation with AHP and TOPSIS

Authors
Costa, DS; Mamede, HS;

Publication
HELIYON

Abstract
Organizations are more frequently turning towards robotic process automation (RPA) as a solu-tion for employees to focus on higher complexity and more valuable tasks while delegating routine, monotonous and rule-based tasks to their digital colleagues. These software robots can handle various rule-based, digital, repetitive tasks. However, currently available process identi-fication methods must be qualified to select suitable automation processes accurately. Wrong process selection and failed attempts are often the origin of process automation's bad reputation within organizations and often result in the avoidance of this technology. As a result, in this research, a method for selecting processes for automation combining two multi-criteria decision -making techniques, 'Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), will be proposed, demonstrated, and evaluated. This study follows the Design Science Research Methodology (DSRM) and applies the proposed method for selecting processes for automation to a real-life scenario. The result will be a method to support the proper selection of business processes for automation, increasing the success of implementing RPA tools in an organization.

2023

Towards a Comprehensive Framework for the Multidisciplinary Evaluation of Organizational Maturity on Business Continuity Program Management: A Systematic Literature Review

Authors
Russo, N; Reis, L; Silveira, C; Mamede, HS;

Publication
INFORMATION SECURITY JOURNAL

Abstract
Organizational dependency on Information and Communication Technology (ICT) drives the preparedness challenge to cope with business process disruptions. Business Continuity Management (BCM) encompasses effective planning to enable business functions to resume to an acceptable state of operation within a defined timeframe. This paper presents a systematic literature review that communicates the strategic guidelines to streamline the organizational processes in the BCM program, culminating in the Business Continuity Plan design, according to the organization's maturity. The systematic literature review methodology follows the Evidence-Based Software Engineering protocol assisted by the Parsifal tool, using the EbscoHost, ScienceDirect, and Scopus databases, ranging from 2000 to February 2021. International Standards and Frameworks guide the BCM program implementation, however, there is a gap in communicating metrics and what needs to be measured in the BCM program. The major paper result is the confirmation of the identified gap, through the analysis of the studies that, according to the BCM components, report strategic guidelines to streamline the BCM program. The analysis quantifies and discusses the contribution of the studies on each BCM component to design a framework supported by metrics, that allows assessing the organization's preparedness in each BCM component, focusing on Information Systems and ICT strategies.

2023

Business Process Automation in SMEs

Authors
Moreira, S; Mamede, HS; Santos, A;

Publication
INFORMATION SYSTEMS, EMCIS 2022

Abstract
Business Process Automation has been gaining increasing importance in the management of companies and organizations since it reduces the time needed to carry out routine tasks, freeing employees for other more creative and exciting things. The use of process automation seems to be a growing trend in the business's operational restructuring, combined with digital transformation. It can be applied in the most varied business areas. Organizations from any sector of activity can also adopt it. Given these benefits, the granted success in transforming business processes would be expected. However, 30 to 50% of automation initiatives with Robotic Process Automation technology fail. In this work, a set of guidelines will be proposed that will constitute, after validation, a framework capable of guiding organizations, with a focus on SMEs, in the procedure of automating their processes, thus obtaining the maximum return of this transformation.

  • 81
  • 663