2022
Authors
Franco Goncalo, P; da Silva, DM; Leite, P; Alves Pimenta, S; Colaco, B; Ferreira, M; Goncalves, L; Filipe, V; McEvoy, F; Ginja, M;
Publication
ANIMALS
Abstract
Simple Summary Radiographic diagnosis is essential for the genetic control of canine hip dysplasia (HD). The Federation Cynologique Internationale (FCI) scoring HD scheme is based on objective and qualitative radiographic criteria. Subjective interpretations can lead to errors in diagnosis and, consequently, to incorrect selective breeding, which in turn impacts the gene pool of dog breeds. The aim of this study was to use a computer method to calculate the Hip Congruency Index (HCI) to objectively estimate radiographic hip congruency for future application in the development of computer vision models capable of classifying canine HD. The HCI measures the percentage of acetabular coverage that is occupied by the femoral head. Normal hips are associated with an even, parallel joint surface that translates into reduced acetabular free space, which increases with hip subluxation and becomes maximal in hip dislocation. We found statistically significant differences in mean HCI values among all five FCI categories. These results demonstrate that the HCI reliably reflects the different degrees of congruency associated with HD. Therefore, it is expected that when used in conjunction with other HD evaluation parameters, such as Norberg angle and assessment of osteoarthritic signs, it can improve the diagnosis by making it more accurate and unequivocal. Accurate radiographic screening evaluation is essential in the genetic control of canine HD, however, the qualitative assessment of hip congruency introduces some subjectivity, leading to excessive variability in scoring. The main objective of this work was to validate a method-Hip Congruency Index (HCI)-capable of objectively measuring the relationship between the acetabulum and the femoral head and associating it with the level of congruency proposed by the Federation Cynologique Internationale (FCI), with the aim of incorporating it into a computer vision model that classifies HD autonomously. A total of 200 dogs (400 hips) were randomly selected for the study. All radiographs were scored in five categories by an experienced examiner according to FCI criteria. Two examiners performed HCI measurements on 25 hip radiographs to study intra- and inter-examiner reliability and agreement. Additionally, each examiner measured HCI on their half of the study sample (100 dogs), and the results were compared between FCI categories. The paired t-test and the intraclass correlation coefficient (ICC) showed no evidence of a systematic bias, and there was excellent reliability between the measurements of the two examiners and examiners' sessions. Hips that were assigned an FCI grade of A (n = 120), B (n = 157), C (n = 68), D (n = 38) and E (n = 17) had a mean HCI of 0.739 +/- 0.044, 0.666 +/- 0.052, 0.605 +/- 0.055, 0.494 +/- 0.070 and 0.374 +/- 0.122, respectively (ANOVA, p < 0.01). Therefore, these results show that HCI is a parameter capable of estimating hip congruency and has the potential to enrich conventional HD scoring criteria if incorporated into an artificial intelligence algorithm competent in diagnosing HD.
2022
Authors
Capela, S; Pereira, V; Duque, J; Filipe, V;
Publication
Procedia Computer Science
Abstract
Nowadays, social networks are one of the biggest ways of sharing real time information. These networks, have several groups focused on sharing information about road incidents and other traffic events. The work here presented aims the creation of an AI model capable of identifying publications related to traffic events in a specific road, based on publications shared on social networks. A predictive model was obtained by training a deep learning model for the detection of publications related with road incidents with an average accuracy of 95%. The model deployed as a service is already fully functional and is operating in 24/7 while awaits a final integration with the road management system of a company where it will be used to support the Control Center team in the decision making. © 2022 Elsevier B.V.. All rights reserved.
2022
Authors
da Silva, DQ; dos Santos, FN; Filipe, V; Sousa, AJ; Oliveira, PM;
Publication
ROBOTICS
Abstract
Object identification, such as tree trunk detection, is fundamental for forest robotics. Intelligent vision systems are of paramount importance in order to improve robotic perception, thus enhancing the autonomy of forest robots. To that purpose, this paper presents three contributions: an open dataset of 5325 annotated forest images; a tree trunk detection Edge AI benchmark between 13 deep learning models evaluated on four edge-devices (CPU, TPU, GPU and VPU); and a tree trunk mapping experiment using an OAK-D as a sensing device. The results showed that YOLOR was the most reliable trunk detector, achieving a maximum F1 score around 90% while maintaining high scores for different confidence levels; in terms of inference time, YOLOv4 Tiny was the fastest model, attaining 1.93 ms on the GPU. YOLOv7 Tiny presented the best trade-off between detection accuracy and speed, with average inference times under 4 ms on the GPU considering different input resolutions and at the same time achieving an F1 score similar to YOLOR. This work will enable the development of advanced artificial vision systems for robotics in forestry monitoring operations.
2022
Authors
Khanal, SR; Paulino, D; Sampaio, J; Barroso, J; Reis, A; Filipe, V;
Publication
ALGORITHMS
Abstract
Physical activity is movement of the body or part of the body to make muscles more active and to lose the energy from the body. Regular physical activity in the daily routine is very important to maintain good physical and mental health. It can be performed at home, a rehabilitation center, gym, etc., with a regular monitoring system. How long and which physical activity is essential for specific people is very important to know because it depends on age, sex, time, people that have specific diseases, etc. Therefore, it is essential to monitor physical activity either at a physical activity center or even at home. Physiological parameter monitoring using contact sensor technology has been practiced for a long time, however, it has a lot of limitations. In the last decades, a lot of inexpensive and accurate non-contact sensors became available on the market that can be used for vital sign monitoring. In this study, the existing research studies related to the non-contact and video-based technologies for various physiological parameters during exercise are reviewed. It covers mainly Heart Rate, Respiratory Rate, Heart Rate Variability, Blood Pressure, etc., using various technologies including PPG, Video analysis using deep learning, etc. This article covers all the technologies using non-contact methods to detect any of the physiological parameters and discusses how technology has been extended over the years. The paper presents some introductory parts of the corresponding topic and state of art review in that area.
2022
Authors
Filipe, V; Teixeira, P; Teixeira, A;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022
Abstract
The development of foot ulcers is associated with the Diabetic Foot (DF), which is a problem detected in patientswith Diabetes Mellitus (DM). Several studies demonstrate that thermography is a technique that can be used to identify and monitor the DF problems, thus helping to analyze the possibility of ulcers arising, as tissue inflammation causes temperature variation. There is great interest in developing methods to detect abnormal plantar temperature changes, since healthy individuals generally show characteristic patterns of plantar temperature variation and that the plantar temperature distribution of DF tissues does not followa specific pattern, so temperature variations are difficult to measure. In this sequel, a methodology, that uses thermograms to analyze the diversity of thermal changes that exist in the plant of a foot and classifies it as being from an individual with possibility of ulcer arising or not, is presented in this paper. Therefore, the concept of clustering is used to propose binary classifiers with different descriptors, obtained using two clustering algorithms, to predict the risk of ulceration in a foot. Moreover, for each descriptor, a numerical indicator and a classification thresholder are presented. In addition, using a combination of two different descriptors, a hybrid quantitative indicator is presented. A public dataset (containing 90 thermograms of the sole of the foot healthy people and 244 of DM patients) was used to evaluate the performance of the classifiers; using the hybrid quantitative indicator and the k-means clustering, the following metrics were obtained: Accuracy = 80%, AUC = 87% and F-measure = 86%.
2022
Authors
Loureiro, C; Filipe, V; Goncalves, L;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022
Abstract
Melanoma is considered the deadliest type of skin cancer and in the last decade, the incidence rate has increased substantially. However, automatic melanoma classification has been widely used to aid the detection of lesions as well as prevent eventual death. Therefore, in this paper we decided to investigate how an attention mechanism combined with a classical backbone network would affect the classification of melanomas. This mechanism is known as triplet attention, a lightweight method that allows to capture cross-domain interactions. This characteristic helps to acquire rich discriminative feature representations. The different experiments demonstrate the effectiveness of the model in five different datasets. The model was evaluated based on sensitivity, specificity, accuracy, and F1-Score. Even though it is a simple method, this attention mechanism shows that its application could be beneficial in classification tasks.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.